|
Applied Physics 2022
低频SKA极化探究I:极化效应对EoR信号的影响
|
Abstract:
探测再电离21 cm信号是存在困难的,即便在比EoR信号高四至五个数量级的前景干扰信号被去除后,由于相关仪器效应仍然能够对EoR信号的探测产生很严重影响。本文旨在通过低频SKA阵列探究极化效应对EoR信号的影响进行探究。在这里,我们在154~162 MHz频段下,在场中央2? × 2?天区,通过模拟数据生成在不同极化STOKES参数下的EoR天图,并生成二维功率谱。通过对比我们发现在各种极化STOKES参数的作用下,其二维功率谱与总强度具有类似的结构,该研究可为后续极化效应的消除提供理论认知和实验基础。
Detecting the epoch of reionization (EoR) 21-cm signal is still very difficult due to the relevant instrument effects, even after the foreground interference that is four to five orders of magnitude higher than the EoR signal is removed. This paper is based on the low-frequency SKA array to ex-plore the influence of polarization effects on EoR signals. In the 2? × 2? sky area in the center of the field, we use simulation data to generate EoR sky map and two-dimensional power spectrum under different polarization STOKES parameters in the 154~162 MHz frequency band. The results indicate that two-dimensional power spectrum has a similar structure to total intensity under various polarization STOKES parameters, which can provide theoretical cognition and experimental basis for the elimination of subsequent polarization effects.
[1] | Furlanetto, S.R., Oh, S.P. and Briggs, F.H. (2006) Cosmology at Low Frequencies: The 21 cm Transition and the High- Redshift Universe. Physics Reports, 433, 181-301. https://doi.org/10.1016/j.physrep.2006.08.002 |
[2] | Asad, K., Koopmans, L., Jeli?, V., Pandey, V.N., Ghosh, A., Abdalla, F.B., et al. (2015) Polarization Leakage in Epoch of Reionization Windows—I. Low Frequency Array Observations of the 3C196 Field. Monthly Notices of the Royal Astronomical Society, 451, 3709-3727. https://doi.org/10.1093/mnras/stv1107 |
[3] | Asad, K., Koopmans, L., Jeli?, V., Ghosh, A., Abdalla, F.B., Brentjen, M.A., et al. (2016) Polarization Leakage in Epoch of Reionization Windows—II. Primary Beam Model and Direction-Dependent Calibration. Monthly Notices of the Royal Astronomical Society, 462, 4482-4494. https://doi.org/10.1093/mnras/stw1863 |
[4] | Asad, K., Koopmans, L., Jeli?, V., de Bruyn, A.G., Pandey, V.N. and Gehlot, B.K. (2018) Polarization Leakage in Epoch of Reionization Windows—III. Wide-Field Effects of Narrow-Field Arrays. Monthly Notices of the Royal Astronomical Society, 476, 3709-3727. https://doi.org/10.1093/mnras/sty258 |
[5] | Vibor, J., Saleem, Z., Labropoulos, P., Thomas, R. M., Bernardi, G., Brentjens, M.A., De Bruyn, A.G., et al. (2010) Foreground Simulations for the LOFAR—Epoch of Reionization Experiment. Monthly Notices of the Royal Astronomical Society, 389, 1319-1335. https://doi.org/10.1111/j.1365-2966.2008.13634.x |
[6] | Kohn, S.A., Aguirre, J.E., Nunhokee, C.D., Bernardi, G., Pober, J,C., Ali, Z.S., et al. (2016) Constraining Polarized Foregrounds for EoR Experiments I: 2D Power Spectra from the PAPER-32 Imaging Array. Astrophysical Journal, 823, Article No. 88. https://doi.org/10.3847/0004-637X/823/2/88 |
[7] | Nunhokee, C.D., Bernardi, G., Kohn, S.A., Aguirre, J.E., Thyagarajan, N., Dillon, J.S., et al. (2017) Constraining Polarized Foregrounds for EoR Experiments. II. Polarization Leakage Simulations in the Avoidance Scheme. The Astrophysical Journal, 848, Article No. 47. https://doi.org/10.3847/1538-4357/aa8b73 |
[8] | Dewdney, P. and Braun, R. (2016) SKA1-Low Configuration Coordinates—Complete Set. SKA Organization. |
[9] | Li, W., Xu, H., Ma, Z., Hu, D., Zhu, Z., Shan, C., et al. (2019) Contribution of Radio Halos to the Foreground for SKA EoR Experiments. The Astrophysical Journal, 879, Article No. 104. https://doi.org/10.3847/1538-4357/ab21bc |
[10] | 李维天. SKA EoR探测实验的射电晕前景建模以及EoR信号分离算法的研究[D]: [博士学位论文]. 上海: 上海交通大学, 2019. |
[11] | Thyagarajan, N., Shankar, N.U., Subrahmanyan, R., Arcus, W., Bernardi, G., Bowman, J.D., et al. (2013) A Study of Fundamental Limitations to Statistical Detection of Redshifted HI from the Epoch of Reionization. The Astrophysical Journal, 776, 1567-1579. https://doi.org/10.1088/0004-637X/776/1/6 |
[12] | Jagannathan, P., Bhatnagar, S., Rau, U. and Taylor, A.R. (2017) Direction Dependent Corrections in Polarimetric Radio Imaging I: Characterizing the Effects of the Primary Beam on full STOKES Imaging. Astronomical Journal, 154, Article No. 56. https://doi.org/10.3847/1538-3881/aa77f8 |
[13] | Hamaker, J.P., Bregman, J.D. and Sault, R.J. (1996) Understanding Radio Polarimetry. I. Mathematical Foundations. Astronomy and Astrophysics Supplement Series, 117, 137-147. https://doi.org/10.1051/aas:1996146 |
[14] | Lian, X., Xu, H., Zhu, Z. and Hu, D. (2020) Contribution of Galactic Free-Free Emission to the Foreground for EoR Signal in SKA Experiments. Monthly Notices of the Royal Astronomical Society, 496, 1232-1242.
https://doi.org/10.1093/mnras/staa1179 |
[15] | Cornwell, T.J., Golap, K. and Bhatnagar, S. (2008) The Noncoplanar Baselines Effect in Radio Interferometry: The W-Projection Algorithm. IEEE Journal of Selected Topics in Signal Processing, 2, 647-657.
https://doi.org/10.1109/JSTSP.2008.2005290 |
[16] | Cornwell, T.J., Golap, K. and Bhatnagar, S. (2005) W Projection: A New Algorithm for Wide Field Imaging with Radio Synthesis Arrays. Astronomical Data Analysis Software and Systems XIV ASP Conference Series. 347, 86-90. |
[17] | Tasse, C., Tol, B., Zwieten, J.V., van Diepen, G. and Bhatnagar, S. (2012) Applying Full Polarization A-Projection to Very Wide Field of View Instruments: An Imager for LOFAR. Astronomy & Astrophysics, 553, 313-326.
https://doi.org/10.1051/0004-6361/201220882 |
[18] | 张利, 肖一凡, 米立功, 卢梅, 赵庆超, 王蓓, 刘祥, 张明, 谢泉. 基于L-BFGS-B局部极小化的自适应尺度CLEAN算法[J]. 贵州大学学报(自然科学版), 2021, 38(1): 38-44. |