全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Conformable分数阶单机无穷大电力系统的混沌容错同步
Tolerant Synchronization Analysis for Conformable Fractional Order Unipolar Infinite Power System

DOI: 10.12677/AAM.2022.111066, PP. 590-599

Keywords: 单机无穷大电力系统,容错同步,Conformable分数阶导数,反演设计
Unipolar Infinite Power System
, Tolerant Synchronization, Conformable Fractional Order Derivative, Backstepping Design

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于反演设计和容错控制研究Conformable分数阶单机无穷大电力系统的混沌同步问题,在设计过程中引入虚拟的误差函数,利用李雅普诺夫稳定性理论确保带有执行器故障的被控系统的鲁棒同步,最后,模拟结果表明所提控制策略的有效性。
A synchronization strategy based on backstepping design and tolerant control is studied for conformable fractional order unipolar infinite power system. The virtual control error functions are introduced in the design, and the Lyapunov stability theory is used to ensure the robust synchronization of the controlled systems with the actuator faults. Finally, the simulation results show the effectiveness of the proposed control strategy.

References

[1]  Torvik, P.J. and Bagley, R.L. (1984) On the Fractional Derivative in the Behavior of Real Materials. Journal of Applied Mechanics, 51, 725-728.
https://doi.org/10.1115/1.3167615
[2]  Tarasov, V.E. and Zaslavsky, G.M. (2006) Fractional Dynamics of Coupled Oscillators with Long-Rang Interaction. Chaos, 16, Article ID: 023110.
[3]  Bolotin, K.L., Ghahari, F., Shulman, M.D., et al. (2009) Observation of the Fractional Quantum Hall Effect in Grapheme. Nature, 462, 196-199.
https://doi.org/10.1038/nature08582
[4]  Khalil, R., Horani, M.A., Yousef, A., et al. (2014) A New Definition of Fractional Derivative. Journal of Computational & Applied Mathematics, 264, 65-70.
https://doi.org/10.1016/j.cam.2014.01.002
[5]  Zhao, D.Z., Pan, X.Q. and Luo, M.K. (2018) A New Framework for Multivariate General Conformable Fractional Calculus and Potential Applications. Physica A, 510, 271-280.
https://doi.org/10.1016/j.physa.2018.06.070
[6]  Atangana, A., Baleanu, D. and Alsaedi, A. (2015) New Properties of Conformable Derivative. Open Mathematics, 13, 889-898.
https://doi.org/10.1515/math-2015-0081
[7]  Feng, Q. and Meng, F. (2018) Oscillation Results for a Fractional Order Dynamic Equation on Time Scales with Conformable Fractional Derivative. Advances in Difference Equations, 2018, Article No. 193.
https://doi.org/10.1186/s13662-018-1643-6
[8]  Fernando, S., Davidson, M. and Marcelo, M. (2018) Conformable Laplace Transform of Fractional Differential Equations. Axioms, 7, Article 55.
https://doi.org/10.3390/axioms7030055
[9]  Ruan, J., Sun, K., Mou, J., et al. (2018) Fractional-Order Simplest Memristor-Based Chaotic Circuit with New Derivative. The European Physical Journal Plus, 133, Article No. 3.
https://doi.org/10.1140/epjp/i2018-11828-0
[10]  He, S.B., Sun, K.H. and Wang, H.H. (2019) Dynamics and Synchronization of Conformable Fractional-Order Hyperchaotic Systems Using the Homotopy Analysis Method. Communications in Nonlinear Science and Numerical Simulation, 73, 146-164.
https://doi.org/10.1016/j.cnsns.2019.02.007
[11]  Unal, E. and Gokdogan, A. (2017) Solution of Conformable Fractional Ordinary Differential Equations via Differential Transform Method. Optik, 128, 264-273.
https://doi.org/10.1016/j.ijleo.2016.10.031
[12]  Ye, D. and Zhao, X. (2014) Robust Adaptive Synchronization for a Class of Chaotic Systems with Actuator Failures and Nonlinear Uncertainty. Nonlinear Dynamics, 76, 973-983.
https://doi.org/10.1007/s11071-013-1181-4
[13]  Zhang, Q. (2015) Chaotic Tolerant Synchronization Analysis with Propagation Delay and Actuator Faults. Mathematical Problems in Engineering, 2015, Article ID: 785861.
https://doi.org/10.1155/2015/785861
[14]  邓立为, 宋歌, 高俊山. 不确定混沌系统的鲁棒自适应容错同步控制[J]. 电机与控制学报, 2017, 21(8): 114-122.
[15]  高俊山, 张玉双, 邓立为. 时滞混沌系统的鲁棒自适应容错同步控制[J]. 计算机仿真, 2020, 37(6): 247-261.
[16]  Zhang, Q. and Jia, G. (2006) Chaos Synchronization of Morse Oscillator via Backstepping Design. Annals of Differential Equation, 22, 456-460.
[17]  Deng, W.X., Yao, J.Y., et al. (2021) Out Feedback Backstepping Control of Hydraulic Actuators with Valve Dynamics Compensation. Mechanical Systems and Signal Processing, 158, Article ID: 107769.
https://doi.org/10.1016/j.ymssp.2021.107769
[18]  Ma, J., Tao, H. and Huang, J.W. (2021) Observer Integrate Backstepping Control for a Ball and Plate System. International Journal of Dynamics and Control, 9, 141-148.
https://doi.org/10.1007/s40435-020-00629-8
[19]  张文跃, 佟来生, 朱跃欧, 等. 磁浮列车悬浮系统的反步控制方法及实验研究[J]. 科学技术与研究, 2021, 21(4): 1563-1567.
[20]  粟世玮, 张思洋, 尤熠然, 等. 一类不确定非线性系统的鲁棒自适应Backstepping控制[J]. 电光与控制, 2020, 27(11): 10-16.
[21]  张师, 于明鑫, 刘馨语. 基于轨迹断面特征根的电力系统暂态稳定定量评估[J]. 吉林电力, 2021, 49(5): 11-15.
[22]  赵亚文, 丛屾. 广域电力系统动态稳定性分析的时滞系统方法[J]. 黑龙江大学工程学报, 2021, 12(1): 68-74.
[23]  王江彬, 刘崇新. 带励磁限制环节混沌电力系统的励磁控制器设计[J]. 电工技术, 2021(10): 109-112.
[24]  徐开军, 张李坚. 单机无穷大系统暂态稳定性仿真及分析[J]. 信息化研究, 2018, 44(6): 31-35.
[25]  武以敏, 魏章志. 具有时滞的单机无穷大系统的随机稳定性[J]. 控制工程, 2018, 25(5): 799-803.
[26]  高红亮, 詹习生, 朱军, 万里光. 基于H∞控制的单机无穷大电力系统输出反馈控制器设计[J]. 广西大学学报(自然科学版), 2019, 44(2): 396-403.
[27]  康勇, 林新春, 郑云, 等. 新能源并网变换器单机无穷大系统的静态稳定极限及静态稳定工作区[J]. 中国电机工程学报, 2020, 40(14): 4506-4515.
[28]  张雪娟, 孙士云, 郑新宇, 等. 含风电扩展单机无穷大系统不对称故障下的暂态稳定性分析[J]. 现代电力, 2020, 37(4): 368-375.
[29]  严波, 贺少波. Conformable分数阶单机无穷大电力系统分岔与混沌研究[J]. 系统科学与数学, 2020, 40(6): 954-968.
[30]  Arredondo, J.M.R. (1999) Obtaining Dynamic Equations through the Minimization of a Line Flows Function. International Journal of Electrical Power& Energy Systems, 21, 365-373.
https://doi.org/10.1016/S0142-0615(99)00005-8
[31]  闵富红, 马美玲, 翟炜, 等. 基于继电特性函数的互联电力系统混沌控制[J]. 物理学报, 2014, 63(5): 1-8.
[32]  倪骏康, 刘崇新, 庞霞. 电力系统混沌振荡的等效快速终端模糊滑模控制[J]. 物理学报, 2013, 62(19): 99-105.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133