全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于MLP的帕金森震颤评级系统
Parkinson’s Tremor Rating System Based on MLP

DOI: 10.12677/SEA.2022.111003, PP. 16-24

Keywords: 帕金森病,震颤,可穿戴设备,多层感知器
Parkinson’s Disease
, Tremors, Wearable Devices, Multilayer Perceptron

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前测量帕金森严重程度的主要方法是医生对照UPDRS量表衡量,存在一定的主观性,为此本文研究出了一种用于衡量帕金森严重程度的评级系统。该系统由可穿戴设备、APP、云平台以及评估模型四部分构成。其中可穿戴设备通过三轴加速度传感器以及蓝牙模块采集震颤加速度传输至APP中进行存储、可视化与上传至云平台中,在平台获取数据后进行预处理并训练模型。通过中值滤波、小波去噪以及信号修正等算法进行数据预处理之后,通过多层感知机对处理后的数据进行学习与分类,最后得到系统的准确率为98%,召回率为96%,F1值为96%。经过实验验证,该系统能较好地反应出患者帕金森震颤的严重程度,为医生的后续判断与治疗提供了重要依据。
At present, the main method of measuring the severity of Parkinson’s is that doctors measure it against the UPDRS scale. There is a certain degree of subjectivity. For this reason, this article has developed a rating system to measure the severity of Parkinson’s. The system consists of four parts: wearable device, APP, cloud platform and evaluation model. Among them, the wearable device col-lects the tremor acceleration through the three-axis acceleration sensor and the Bluetooth module and transmits it to the APP for storage, visualization and upload to the cloud platform. After the platform obtains the data, it preprocesses and trains the model. After data preprocessing through median filtering, wavelet denoising and signal correction algorithms, the processed data are learned and classified by a multi-layer perceptron. Finally, the accuracy rate of the system is 98%, and the recall rate is 96%. The F1 value is 96%. After experimental verification, the system can better reflect the severity of the patient’s Parkinson’s tremor, providing an important basis for the doctor’s follow-up judgment and treatment.

References

[1]  邓爱萍, 吴妹清, 袁平乔, 杨玲. 帕金森病患者睡眠障碍研究进展[J]. 护理学报, 2019, 26(18): 27-31.
[2]  Samii, A., Nutt, J.G. and Ransom, B.R. (2004) Parkinson’s Disease. Lancet, 363, 1783-1793.
https://doi.org/10.1016/S0140-6736(04)16305-8
[3]  Blakemore, R.L., MacAskill, M.R., Myall, D.J. and Anderson, T.J. (2019) Volitional Suppression of Parkinsonian Resting Tremor. Movement Disorders Clinical Practice, 6, 470-478.
https://doi.org/10.1002/mdc3.12801
[4]  武璐丽, 李婕, 由金玲, 刘韫宁, 刘江美, 周脉耕, 牛丕业. 1990-2019年北京市和上海市帕金森病的疾病负担分析[J/OL]. 疾病监测, 2021: 1-7. http://kns.cnki.net/kcms/detail/11.2928.R.20211011.1751.002.html, 2021-10-20.
[5]  Sciarrone, A., Bisio, I., Garibotto, C., Lavagetto, F., Hamedani, M., Prada, V., et al. (2021) Early Detection of External Neurological Symptoms through a Wearable Smart-Glasses Prototype. Journal of Communications Software and Systems, 17, 160-168.
https://doi.org/10.24138/jcomss-2021-0071
[6]  Zajki-Zechmeister, T., Kgl, M., Kalsberger, K., Franthal, S., Homayoon, N., Katschnig-Winter, P., et al. (2020) Quantification of Tremor Severity with a Mobile Tremor pen. Heliyon, 6, Article ID: e04702.
https://doi.org/10.1016/j.heliyon.2020.e04702
[7]  Silva de Lima, A., Hahn, T., de Vries, N., Cohen, E., Bataille, L., Little, M.A., et al. (2016) Large-Scale Wearable Sensor Deployment in Parkinson’s Patients: The Parkinson@Home Study Protocol. JMIR Research Protocols, 5, Article No. e172.
https://doi.org/10.2196/resprot.5990
[8]  Ossig, C., Antonini, A., Buhmann, C., Classen, J., Csoti, I. and Falkenburger, B. (2016) Wearable Sensor-Based Objective Assessment of Motor Symptoms in Parkinson’s Disease. Journal of Neural Transmission, 123, 57-64.
https://doi.org/10.1007/s00702-015-1439-8
[9]  Hagan, M., Constantinescu, A. and Geman, O. (2016) Tremor Analysis in Neurological Disorders Using Intelligent Clothes. E-Health & Bioengineering Conference, Iasi, 19-21 November 2015, 1-4.
https://doi.org/10.1109/EHB.2015.7391406
[10]  Sciarrone, A., Bisio, I., Garibotto, C., Lavagetto, F., Staude, G. and Knopp, A. (2020) A Wearable Prototype for Neurological Symptoms Recognition. 2020 IEEE International Conference on Communications (ICC). Dublin, 7-11 June 2020, 1-7.
https://doi.org/10.1109/ICC40277.2020.9149017
[11]  Pierleoni, P., Belli, A., Bazgir, O., Maurizi, L., Paniccia, M. and Palma, L. (2019) A Smart Inertial System for 24h Monitoring and Classification of Tremor and Freezing of Gait in Parkinson’s Disease. IEEE Sensors Journal, 19, 11612-11623.
https://doi.org/10.1109/JSEN.2019.2932584
[12]  梁璐, 潘丽. 基于PIC18F67J50的电子容积表设计[J]. 自动化与仪器仪表, 2014(2): 36-39.
[13]  张雨倩, 顾冬云. 帕金森震颤与原发性震颤的计算机辅助诊断方法综述[J]. 计算机科学, 2019, 46(7): 22-29.
[14]  冯亮, 董国祥, 季盛, 文逸彦, 黄珍平, 乔继潘. 基于航行数据的船舶航行油耗模型建立方法[J]. 上海船舶运输科学研究所学报, 2020, 43(1): 27-31.
[15]  白忠领. 基于深度学习的超窄间隙焊接质量评估方法研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2019.
[16]  付琰. 基于样本生成的多任务图像分类方法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133