全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于用户行为特征的低能耗身份认证
Low Energy Identity Authentication Based on User Behavior Characteristics

DOI: 10.12677/SEA.2022.111006, PP. 41-49

Keywords: 行为特征,移动终端,传感器数据,身份认证,低能耗
Behavioral Characteristics
, Mobile Terminal, Sensor Data, Identity Authentication, Low Energy Consumption

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前,移动设备中传统的身份认证如密码、指纹等方式存在安全性低、易被破解等风险,不能完全保护使用者的隐私。本文提出基于用户行为特征的持续身份认证方案,通过调用移动终端传感器获得与用户行为相关的数据,采用最大互信息系数提取出能表征用户的特征,再利用机器学习算法进行模型训练,对用户身份进行识别。为了使持续的身份认证方式尽可能减少能耗,提出了低能耗的身份认证模型,对内置传感器的不同采样频率和识别算法进行能耗分析,实验结果表明,模型采用朴素贝叶斯算法,传感器采样率为25 Hz时,可以使认证精度达到97.94%,且显著降低认证模型的能耗。
At present, the traditional identity authentication in mobile devices, such as password and finger-print, has low security, easy to be cracked and has other risks, and cannot completely protect the user’s privacy. In this paper, a continuous identity authentication scheme based on user behavior characteristics is proposed. The data related to user behavior are obtained by calling mobile terminal sensors, and the features that can represent users are extracted by using maximum mutual information coefficient. Then the user identity is identified by machine learning algorithm for model training. In order to make the continuous authentication way as far as possible to reduce energy consumption, low energy consumption of the authentication model is put forward, with built-in sensors of different sampling frequency and identification algorithms for analysis of energy consumption, the experimental results show that the model uses naive Bayesian algorithm, the sensor when the sampling rate is 40 Hz, can make the authentication accuracy reach 97.94%, and significantly reduce the energy consumption of authentication model.

References

[1]  Shen, C., Zhang, Y., Cai, Z., et al. (2015) Touch-Interaction Behavior for Continuous User Authentication on Smartphones. Proceedings of ICB, Phuket, 19-22 May 2015, 157-162.
https://doi.org/10.1109/ICB.2015.7139046
[2]  Sarsavadia, R. and Patel, U. (2018) A Survey on Intelligent Face Recognition System. In: International Conference on ISMAC in Computational Vision and Bio-Engineering. Springer, Cham, 1209-1215.
https://doi.org/10.1007/978-3-030-00665-5_114
[3]  Bortolon, C., Capdevielle, D. and Raffard, S. (2015) Face Recognition in Schizophrenia Disorder: A Comprehensive Review of Behavioral, Neuroimaging and Neurophysiological Studies. Neuroscience & Biobehavioral Reviews, 53, 79-107.
https://doi.org/10.1016/j.neubiorev.2015.03.006
[4]  Ali, M.M.H., Mahale, V.H., Yannawar, P., et al. (2016) Overview of Fingerprint Recognition System. 2016 International Conference on Electrical, Electronics, and Optimiza-tion Techniques (ICEEOT), Chennai, 3-5 March 2016, 1334-1338.
https://doi.org/10.1109/ICEEOT.2016.7754900
[5]  Liu, X., Li, Y., Deng, R.H., et al. (2018) When Human Cog-nitive Modeling Meets PINs: User-Independent Inter-Keystroke Timing Attacks. Computers & Security, 80, 90-107.
https://doi.org/10.1016/j.cose.2018.09.003
[6]  林梦琪, 张晓梅. 基于行为足迹的多模态融合身份认证[J]. 计算机工程, 2021, 47(10): 116-124.
[7]  Yu, S.J., Younglee, J., Kim, M.H., et al. (2020) A Secure Biometric Based Us-er Authentication Protocol in Wireless Sensor Networks. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, 6-8 January 2020, 0830-0834.
https://doi.org/10.1109/CCWC47524.2020.9031136
[8]  Patel, V.M., Chellappa, R., Chandra, D., et al. (2016) Continuous User Authentication on Mobile Devices: Recent Progress and Remaining Challenges. IEEE Signal Pro-cessing Magazine, 33, 49-61.
https://doi.org/10.1109/MSP.2016.2555335
[9]  Shrestha, B., Saxena, N. and Harrison, J. (2013) Wave-to-Access: Protecting Sensitive Mobile Device Services via a Hand Waving Gesture. Springer International Pub-lishing, Berlin.
https://doi.org/10.1007/978-3-319-02937-5_11
[10]  童随兵. 基于深度网络的步态识别技术研究[D]: [博士学位论文]. 上海: 上海交通大学, 2019.
[11]  Crawford, H. (2010) Keystroke Dynamics: Characteristics and Opportunities. IEEE 8th International Conference on Privacy Security & Trust, Ottawa, 17-19 August 2010, 205-212.
https://doi.org/10.1109/PST.2010.5593258
[12]  Xu, H., Zhou, Y. and Lyu, M.R. (2014) Towards Con-tinuous and Passive Authentication via Touch Biometrics: An Experimental Study on Smartphones. 10th Symposium on Usable Privacy and Security (SOUPS 2014), Menlo Park, 9-11 July 2014, 187-198.
[13]  Frank, M., Biedert, R., Ma, E., et al. (2013) Touchalytics: On the Applicability of Touchscreen Input as a Behavioral Biometric for Continuous Authen-tication. IEEE Transactions on Information Forensics and Security, 8, 136-148.
https://doi.org/10.1109/TIFS.2012.2225048
[14]  Hestbek, M.R., Nickel, C. and Busch, C. (2012) Biometric Gait Recognition for Mobile Devices Using Wavelet Transform and Support Vector Machines. 19th International Conference on Systems, Signals and Image Processing (IWSSIP), Vienna, 11-13 April 2012, 205-210.
[15]  Riva, O., Qin, C., Strauss, K., et al. (2011) Progressive Authentication: Deciding When to Authenticate on Mobile Phones. Proceedings of Usenix Security Symposium, San Francisco, 8-12 August 2011, 15.
[16]  Yang, Y. and Sun, J. (2017) Energy-Efficient W-Layer for Behavior-Based Implicit Authentication on Mobile Devices. IEEE Conference on Computer Communica-tions, Atlanta, 1-4 May 2017, 1-9.
https://doi.org/10.1109/INFOCOM.2017.8057222

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133