|
基于迭代最少点和遗传算法的点云粗配准算法
|
Abstract:
为了兼顾点云配准过程的时间和精度,提出了基于迭代最少点和遗传算法的点云粗配准算法。将源点云和目标点云的总点云进行下采样,以采样后总点云的数量作为遗传算法的目标函数,采用遗传算子指导解的搜索方向,通过新种群的迭代使下采样总点云数量最少,快速得到点云粗配准的结果。通过对6组不同的点云,以及采用多种算法进行对比试验,结果表明,该算法在保证配准精度的同时,耗时稳定在24 s左右,且对待配准点云模型无特殊要求,鲁棒性较强。
To balance the time and precision of the point cloud registration process, a point cloud coarse registration algorithm based on the iterative minimum point and genetic algorithm is proposed. The total point clouds of the source point clouds and target point clouds are down sampled, with the number of the total point clouds after sampled as the target function of the genetic algorithm, the genetic operator guides the search direction of the solution, the total number of sampled point clouds minimizes through the iteration of the new population, and the results of point cloud coarse registration are obtained quickly. By comparing the tests of six different point clouds and using various algorithms, the results show that the proposed algorithm takes about 24 seconds stably while ensuring the registration accuracy, and treats the registration point cloud model without special requirements and has strong robustness.
[1] | Jiang, W., Xu, K., Cheng, Z.Q. and Zhang, H. (2013) Skeleton-Based Intrinsic Symmetry Detection on Point Clouds. Graphical Models, 75, 177-188. https://doi.org/10.1016/j.gmod.2013.03.001 |
[2] | 朱宁宁. 三维激光扫描在地铁隧道形变监测中的应用[J]. 测绘工程, 2015, 24(5): 63-68. |
[3] | 杨稳, 周明全, 郭宝, 耿国华, 刘晓宁, 刘阳洋. 基于曲率图的颅骨点云配准方法[J]. 光学学报, 2020, 40(16): 1610002. https://doi.org/10.3788/AOS202040.1610002 |
[4] | 邱兆文, 张田文. 文物三维重建关键技术[J]. 电子学报, 2008, 36(12): 2423-2427. |
[5] | 张德海, 崔国英, 白代萍, 等. 逆向工程中的三维光学检测点云采样技术研究[J]. 计算机应用研究, 2014, 31(3): 946-948. |
[6] | 韩浩宇, 张元, 韩燮. 一种改进的激光点云滤波算法[J]. 激光与光电子学进展, 2021, 58(20): 2010001.
https://doi.org/10.3788/LOP202158.2010001 |
[7] | 赵梦娜, 花向红, 冯绍权, 赵不钒. 基于点云切片的建筑物门窗信息提取[J]. 中国激光, 2020, 47(6): 0604002.
https://doi.org/10.3788/CJL202047.0604002 |
[8] | Besl, P.J. and Mckay, H.D. (1992) A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239-256. https://doi.org/10.1109/34.121791 |
[9] | Rusu, R.B., Blodow, N., Marton, Z.C. and Beetz, M. (2008) Aligning Point Cloud Views Using Persistent Feature Histograms. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 22-26 September 2008, 3384-3391. https://doi.org/10.1109/IROS.2008.4650967 |
[10] | Rusu, R.B., Blodow, N. and Beetz, M. (2009) Fast Point Feature Histograms (FPFH) for 3D Registration. IEEE International Con-ference on Robotics & Automation, Kobe, 12-17 May 2009, 3212-3217.
https://doi.org/10.1109/ROBOT.2009.5152473 |
[11] | Tangelder, J. and Veltkamp, R.C. (2008) A Survey of Content Based 3D Shape Retrieval Methods. Multimedia Tools & Applications, 39, Article No. 441. https://doi.org/10.1007/s11042-007-0181-0 |
[12] | 刘鸣, 舒勤, 杨赟秀, 袁菲. 基于独立成分分析的三维点云配准算法[J]. 激光与光电子学进展, 2019, 56(1): 011203. https://doi.org/10.3788/LOP56.011203 |
[13] | 唐志荣, 蒋悦, 苗长伟, 赵成强. 基于因子分析法的三维点云配准算法[J]. 激光与光电子学进展, 2019, 56(19): 191503. https://doi.org/10.3788/LOP56.191503 |
[14] | 李宇翔, 郭际明, 潘尚毅, 吕丽丽, 卢主兴, 章迪. 一种基于ISS-SHOT特征的点云配准算法[J]. 测绘通报, 2020(4): 21-26. |
[15] | 马卫. 基于布谷鸟优化的三维点云配准算法[J]. 计算机应用与软件, 2020, 37(12): 216-223+272. |
[16] | 陈斯祺, 张海洋, 赵长明, 张子龙, 王文鑫, 张明. 基于天牛须改进粒子群算法的点云配准方法[J]. 激光技术, 2020, 44(6): 678-683. |
[17] | 孙殿柱, 史阳, 刘华东, 李延瑞. 基于遗传算法的散乱点云最小包围盒求解[J]. 北京航空航天大学学报, 2013, 39(8): 995-998. |