|
基于GA-BP算法的高炉矿渣–粉煤灰混凝土抗压强度预测
|
Abstract:
为更准确地预测高炉矿渣–粉煤灰混凝土抗压强度,在MATLAB平台上通过遗传算法对BP神经网络的初始权值和阈值进行改进,建立了抗压强度预测的GA-BP模型。将人工神经网络(BP)、随机森林(RF)、支持向量机(SVM)、极限学习机(ELM)和多元非线性回归(MnLR)的预测结果进行对比分析,GA-BP模型的预测精度和模型稳定性等方面优势明显。从而为高炉矿渣–粉煤灰混凝土质量评估提供指导,具有重要的实用价值。
In order to predict the compressive strength of blast furnace slag-fly ash concrete more accurately, a GA-BP model for compressive strength prediction was developed by improving the initial weights and thresholds of BP neural network through genetic algorithm on MATLAB platform. The prediction results of artificial neural network (BP), random forest (RF), support vector machine (SVM), extreme learning machine (ELM) and multiple nonlinear regression (MnLR) were compared and analyzed, and the GA-BP model has obvious advantages in terms of prediction accuracy and model stability. Thus, it provides guidance for the quality assessment of blast furnace slag-fly ash concrete, which has important practical value.
[1] | Hussain, Y. and Rolph C. (2015) Coriolis Mass Flowmeter. Flow Measurement & Instrumentation, 3, 241-246. |
[2] | 宋明刚, 樊尚春. Coriolis质量流量测量技术的发展综述[J]. 测控技术, 2000, 19(10): 1-2+9. |
[3] | 段慧明, 史振东. 介绍2008版《科里奥利质量流量计》检定规程[J]. 中国计量, 2009(4): 121-122. |
[4] | 何晓凤, 周红标. 基于GA-BP的混凝土抗压强度预测研究[J]. 淮阴工学院学报, 2011, 20(3): 21-25. |
[5] | 马高, 刘康. 基于BP神经网络CFRP约束混凝土抗压强度预测[J]. 湖南大学学报(自然科学版), 2021, 48(9): 88-97. |
[6] | 胡毅, 张陆山, 袁福银, 李铁军, 吴贤国, 邓婷婷. 基于随机森林的混凝土强度预测研究[J]. 施工技术, 2020, 49(17): 89-94. |
[7] | 曹斐, 周彧, 王春晓, 任梦宇, 周峰. 一种改进的支持向量回归的混凝土强度预测方法[J]. 硅酸盐通报, 2021, 40(1): 90-97. |
[8] | Yaseen, Z.M., Deo, R.C., Hilal, A., et al. (2018) Predicting Compressive Strength of Lightweight Foamed Concrete Using Extreme Learning Machine Model. Advances in Engineering Software, 115, 112-125.
https://doi.org/10.1016/j.advengsoft.2017.09.004 |
[9] | 许开成, 毕丽苹, 陈梦成. 基于SPSS回归分析的锂渣混凝土抗压强度预测模型[J]. 建筑科学与工程学报, 2017, 34(1): 15-24. |
[10] | 任谢楠. 基于遗传算法的BP神经网络的优化研究及MATLAB仿真[D]: [硕士学位论文]. 天津: 天津师范大学, 2014. |
[11] | 胡立黎. 基于神经网络和遗传算法的无粘结部分预应力高强混凝土梁延性研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2006. |
[12] | 杨杰, 占君, 张继传. MATLAB神经网络30例[M]. 北京: 电子工业出版社, 2014. |