全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Review: Neuronal Differentiation Protocols of Mesenchymal Stem Cells

DOI: 10.4236/abb.2022.131002, PP. 15-71

Keywords: Mesenchymal Stem Cells, Transdifferentiating, Neuronal Differentiation, Small Molecules, miRNA, Neural Induction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mesenchymal stem cells (MSCs) are self-renewing cells found in almost all postnatal organs and tissues in the perivascular region. These cells present multiple characteristics that make them candidates to be applied in cell therapy for neurodegenerative diseases, such as their secretory action, migration to the lesion area, and immunomodulatory potential. These cells have a high capacity for mesodermal differentiation; however, numerous studies have shown that MSCs can also differentiate into neurons. However, despite positive results in multiple trials in which undifferentiated MSCs transplanted into animal models of neurodegenerative diseases, some studies suggest that the therapeutic effects obtained are enhanced by the use of MSCs differentiated towards the neuronal lineage before transplant. In this sense, there are several methods to induce in vitro reprogramming of MSCs towards the neuronal lineage, including chemical substances, growth factors, cocultures with neural lineage cells, transfection of genes, miRNAs, etc., and small molecules stand out. Therefore, this article compares multiple experimental tests in which these inducers promote neuronal differentiation of MSCs and identify those methods that originate an optimal neuronal differentiation. The analysis includes the percentage of differentiation, maturation, expression of neuronal markers, functionality, and cell survival considering the intrinsic characteristics of the MSCs used as the tissue of origin and the species from which they were isolated.

References

[1]  Ahuja, C.S., Mothe, A., Khazaei, M., Badhiwala, J.H., Gilbert, E.A., Kooy, D., et al. (2020) The Leading Edge: Emerging Neuroprotective and Neuroregenerative Cell-Based Therapies for Spinal Cord Injury. Stem Cells Translational Medicine, 9, 1509-1530.
https://onlinelibrary.wiley.com/doi/abs/10.1002/sctm.19-0135
https://doi.org/10.1002/sctm.19-0135
[2]  Socarrás-Ferrer, L.B., del Valle-Pérez, L.L.O., et al. (2013) Células madre mesenquimales: Aspectos relevantes y aplicación clínica en la medicina regenerativa. Revista Cubana de Hematología, Inmunología y Hemoterapia, 29, 16-23.
http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-02892013000100003
[3]  Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., et al. (2006) Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy, 8, 315-317.
https://doi.org/10.1080/14653240600855905
[4]  Lukomska, B., Stanaszek, L., Zuba-Surma, E., Legosz, P., Sarzynska, S. and Drela, K. (2019) Challenges and Controversies in Human Mesenchymal Stem Cell Therapy. Stem Cells International, 2019, Article ID: 9628536.
https://doi.org/10.1155/2019/9628536
[5]  Lee, K.-D., Kuo, T.K.C., Whang-Peng, J, Chung, Y.F., Lin, C.T., Chou, S.H., et al. (2004) In Vitro Hepatic Differentiation of Human Mesenchymal Stem Cells. Hepatology, 40, 1275-1284.
https://pubmed.ncbi.nlm.nih.gov/15562440/
https://doi.org/10.1002/hep.20469
[6]  Chen, L.B., Jiang, X.B. and Yang, L. (2004) Differentiation of Rat Marrow Mesenchymal Stem Cells into Pancreatic Islet Beta-Cells. World Journal of Gastroenterology, 10, 3016-3020.
https://doi.org/10.3748/wjg.v10.i20.3016
[7]  Shi, Y., Hu, Y., Lv, C. and Tu, G. (2016) Effects of Reactive Oxygen Species on Differentiation of Bone Marrow Mesenchymal Stem Cells. Annals of Transplantation, 21, 695-700.
https://doi.org/10.12659/AOT.900463
[8]  Ayala-Grosso, C., Pieruzzini, R., Vargas-Saturno, L. and Cardier, J.E. (2020) Human Olfactory Mesenchymal Stromal Cells Co-Expressing Horizontal Basal and Ensheathing Cell Proteins in Culture. Biomedica, 40, 72-88.
https://doi.org/10.7705/biomedica.4762
[9]  Ying, C., Hu, W., Cheng, B., Zheng, X. and Li, S. (2012) Neural Differentiation of Rat Adipose-Derived Stem Cells in Vitro. Cellular and Molecular Neurobiology, 32, 1255-1263.
https://link.springer.com/article/10.1007/s10571-012-9850-2
https://doi.org/10.1007/s10571-012-9850-2
[10]  Pittenger, M.F. (1999) Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science, 284, 143-147.
https://www.sciencemag.org/lookup/doi/10.1126/science.284.5411.143
https://doi.org/10.1126/science.284.5411.143
[11]  Jackson, W.M., Nesti, L.J. and Tuan, R.S. (2010) Potential Therapeutic Applications of Muscle-Derived Mesenchymal Stem and Progenitor Cells. Expert Opinion on Biological Therapy, 10, 505-517.
https://doi.org/10.1517/14712591003610606
[12]  Chen, P.M., Yen, M.L., Liu, K.J., Sytwu, H.K. and Yen, B.L. (2011) Immunomodulatory Properties of Human Adult and Fetal Multipotent Mesenchymal Stem Cells. Journal of Biomedical Science, 18, Article No. 49.
http://www.jbiomedsci.com/content/18/1/49
https://doi.org/10.1186/1423-0127-18-49
[13]  Bas, E., Van De Water, T.R., Lumbreras, V., Rajguru, S., Goss, G., Hare, J.M., et al. (2014) Adult Human Nasal Mesenchymal-Like Stem Cells Restore Cochlear Spiral Ganglion Neurons after Experimental Lesion. Stem Cells and Development, 23, 502-514.
https://doi.org/10.1089/scd.2013.0274
[14]  Delorme, B., Nivet, E., Gaillard, J., Haupl, T., Ringe, J., Devèze, A., et al. (2010) The Human Nose Harbors a Niche of Olfactory Ectomesenchymal Stem Cells Displaying Neurogenic and Osteogenic Properties. Stem Cells and Development, 19, 853-866.
https://doi.org/10.1089/scd.2009.0267
[15]  Kern, S., Eichler, H., Stoeve, J., Klüter, H. and Bieback, K. (2006) Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue. Stem Cells, 24, 1294-1301.
https://stemcellsjournals.onlinelibrary.wiley.com/doi/full/10.1634/stemcells.2005-0342
https://doi.org/10.1634/stemcells.2005-0342
[16]  Tremain, N., Korkko, J., Ibberson, D., Kopen, G.C., DiGirolamo, C. and Phinney, D.G. (2001) MicroSAGE Analysis of 2,353 Expressed Genes in a Single Cell-Derived Colony of Undifferentiated Human Mesenchymal Stem Cells Reveals mRNAs of Multiple Cell Lineages. Stem Cells, 19, 408-418.
https://pubmed.ncbi.nlm.nih.gov/11553849/
https://doi.org/10.1634/stemcells.19-5-408
[17]  Weiss, M.L., Medicetty, S., Bledsoe, A.R., Rachakatla, R.S., Choi, M., Merchav, S., et al. (2006) Human Umbilical Cord Matrix Stem Cells: Preliminary Characterization and Effect of Transplantation in a Rodent Model of Parkinson’s Disease. Stem Cells, 24, 781-792.
https://doi.org/10.1634/stemcells.2005-0330
[18]  Zhong, C., Qin, Z., Zhong, C.J., Wang, Y. and Shen, X.Y. (2003) Neuroprotective Effects of Bone Marrow Stromal Cells on Rat Organotypic Hippocampal Slice Culture Model of Cerebral Ischemia. Neuroscience Letters, 342, 93-96.
https://doi.org/10.1016/S0304-3940(03)00255-6
[19]  Chen, X., Katakowski, M., Li, Y., Lu, D., Wang, L., Zhang, L., et al. (2002) Human Bone Marrow Stromal Cell Cultures Conditioned by Traumatic Brain Tissue Extracts: Growth Factor Production. Journal of Neuroscience Research, 69, 687-691.
http://doi.wiley.com/10.1002/jnr.10334
https://doi.org/10.1002/jnr.10334
[20]  Himes, B.T., Neuhuber, B., Coleman, C., Kushner, R., Swanger, S.A., Kopen, G.C., et al. (2006) Recovery of Function Following Grafting of Human Bone Marrow-Derived Stromal Cells into the Injured Spinal Cord. Neurorehabilitation and Neural Repair, 20, 278-296.
http://journals.sagepub.com/doi/10.1177/1545968306286976
https://doi.org/10.1177/1545968306286976
[21]  Xun, C., Ge, L., Tang, F., Wang, L., Zhuo, Y., Long, L., et al. (2020) Insight into the Proteomic Profiling of Exosomes Secreted by Human OM-MSCs Reveals a New Potential Therapy. Biomedicine & Pharmacotherapy, 131, Article ID: 110584.
https://doi.org/10.1016/j.biopha.2020.110584
[22]  Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., et al. (2013) MiR-133b Promotes Neural Plasticity and Functional Recovery after Treatment of Stroke with Multipotent Mesenchymal Stromal Cells in Rats via Transfer of Exosome-Enriched Extracellular Particles. Stem Cells, 31, 2737-2746.
https://pubmed.ncbi.nlm.nih.gov/23630198/
https://doi.org/10.1002/stem.1409
[23]  Jin, M., Chen, Y., Zhou, Y., Mei, Y., Liu, W., Pan, C., et al. (2016) Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells Expressing Elastin Alleviates Pelvic Floor Dysfunction. Stem Cell Research & Therapy, 7, Article No. 51.
http://stemcellres.biomedcentral.com/articles/10.1186/s13287-016-0308-1
https://doi.org/10.1186/s13287-016-0308-1
[24]  Klein, A., Barsky, L.W., Wu, G., Zhu, H., Mitsuhashi, N., Weinberg, K., et al. (2009) The Role of the Hyaluronan Receptor CD44 in Mesenchymal Stem Cell Migration in the Extracellular Matrix.
https://pubmed.ncbi.nlm.nih.gov/16306150/
[25]  Patel, D.M., Shah, J. and Srivastava, A.S. (2013) Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine. Stem Cells International, 2013, Article ID: 496218.
https://doi.org/10.1155/2013/496218
[26]  Kopen, G.C., Prockop, D.J. and Phinney, D.G. (1999) Marrow Stromal Cells Migrate throughout Forebrain and Cerebellum, and They Differentiate into Astrocytes after Injection into Neonatal Mouse Brains. Proceedings of the National Academy of Sciences of the United States of America, 96, 10711-10716.
https://doi.org/10.1073/pnas.96.19.10711
[27]  Azizi, S.A., Stokes, D., Augelli, B.J., DiGirolamo, C. and Prockop, D.J. (1998) Engraftment and Migration of Human Bone Marrow Stromal Cells Implanted in the Brains of Albino Rats—Similarities to Astrocyte Grafts. Proceedings of the National Academy of Sciences of the United States of America, 95, 3908-3913.
https://doi.org/10.1073/pnas.95.7.3908
[28]  Eglitis, M.A., Dawson, D., Park, K.W. and Mouradian, M.M. (1999) Targeting of Marrow-Derived Astrocytes to the Ischemic Brain. Neuroreport, 10, 1289-1292.
https://doi.org/10.1097/00001756-199904260-00025
[29]  Jendelová, P., Herynek, V., Urdzíková, L., Glogarová, K., Kroupová, J., Andersson, B., et al. (2004) Magnetic Resonance Tracking of Transplanted Bone Marrow and Embryonic Stem Cells Labeled by Iron Oxide Nanoparticles in Rat Brain and Spinal Cord. Journal of Neuroscience Research, 76, 232-243.
http://doi.wiley.com/10.1002/jnr.20041
https://doi.org/10.1002/jnr.20041
[30]  Nivet, E., Vignes, M., Girard, S.D., Pierrisnard, C., Baril, N., Devèze, A., et al. (2011) Engraftment of Human Nasal Olfactory Stem Cells Restores Neuroplasticity in Mice with Hippocampal Lesions. Journal of Clinical Investigation, 121, 2808-2820.
https://doi.org/10.1172/JCI44489
[31]  Wang, L., Li, Y., Chen, J., Gautam, S.C., Zhang, Z., Lu, M., et al. (2002) Ischemic Cerebral Tissue and MCP-1 Enhance Rat Bone Marrow Stromal Cell Migration in Interface Culture. Experimental Hematology, 30, 831-836.
https://doi.org/10.1016/S0301-472X(02)00829-9
[32]  Girard, S.D., Virard, I., Lacassagne, E., Paumier, J.M., Lahlou, H., Jabes, F., et al. (2017) From Blood to Lesioned Brain: An in Vitro Study on Migration Mechanisms of Human Nasal Olfactory Stem Cells. Stem Cells International, 2017, Article ID: 1478606.
https://doi.org/10.1155/2017/1478606
[33]  Ould-Yahoui, A., Sbai, O., Baranger, K., Bernard, A., Gueye, Y., Charrat, E., et al. (2013) Role of Matrix Metalloproteinases in Migration and Neurotrophic Properties of Nasal Olfactory Stem and Ensheathing Cells. Cell Transplantation, 22, 993-1010.
https://pubmed.ncbi.nlm.nih.gov/23043957/
https://doi.org/10.3727/096368912X657468
[34]  Aggarwal, S. and Pittenger, M.F. (2005) Human Mesenchymal Stem Cells Modulate Allogeneic Immune Cell Responses. Blood, 105, 1815-1822.
http://ashpublications.org/blood/article-pdf/105/4/1815/1707068/zh800405001815.pdf
https://doi.org/10.1182/blood-2004-04-1559
[35]  Ramesh, R., Jeyaraman, M., Chaudhari, K., Dhamsania, H. and G. S., P. (2018) Mesenchymal Stem Cells—A Boon to Orthopedics. Open Journal of Regenerative Medicine, 7, 19-27.
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=88454
https://doi.org/10.4236/ojrm.2018.72002
[36]  Enomoto, M. (2015) The Future of Bone Marrow Stromal Cell Transplantation for the Treatment of Spinal Cord Injury. Neural Regeneration Research, 10, 383-384.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396098/
https://doi.org/10.4103/1673-5374.153684
[37]  Haack-Sorensen, M., Bindslev, L., Mortensen, S., Friis, T. and Kastrup, J. (2007) The Influence of Freezing and Storage on the Characteristics and Functions of Human Mesenchymal Stromal Cells Isolated for Clinical Use. Cytotherapy, 9, 328-337.
https://doi.org/10.1080/14653240701322235
[38]  Mueller, S.M. and Glowacki, J. (2001) Age-Related Decline in the Osteogenic Potential of Human Bone Marrow Cells Cultured in Three-Dimensional Collagen Sponges. Journal of Cellular Biochemistry, 82, 583-590.
https://onlinelibrary.wiley.com/doi/full/10.1002/jcb.1174
https://doi.org/10.1002/jcb.1174
[39]  Onate, B., Vilahur, G., Ferrer-Lorente, R., Ybarra, J., Díez-Caballero, A., Ballesta-López, C., et al. (2012) The Subcutaneous Adipose Tissue Reservoir of Functionally Active Stem Cells Is Reduced in Obese Patients. The FASEB Journal, 26, 4327-4336.
http://www.fasebj.org
https://doi.org/10.1096/fj.12-207217
[40]  Li, Y., Chopp, M., Chen, J., Wang, L., Gautam, S.C., Xu, Y.X., et al. (2000) Intrastriatal Transplantation of Bone Marrow Nonhematopoietic Cells Improves Functional Recovery after Stroke in Adult Mice. Journal of Cerebral Blood Flow & Metabolism, 20, 1311-1319.
http://journals.sagepub.com/doi/10.1097/00004647-200009000-00006
https://doi.org/10.1097/00004647-200009000-00006
[41]  Zhao, L.R., Duan, W.M., Reyes, M., Keene, C.D., Verfaillie, C.M. and Low, W.C. (2002) Human Bone Marrow Stem Cells Exhibit Neural Phenotypes and Ameliorate Neurological Deficits after Grafting into the Ischemic Brain of Rats. Experimental Neurology, 174, 11-20.
https://doi.org/10.1006/exnr.2001.7853
[42]  Li, Y., Chen, J., Zhang, C.L., Wang, L., Lu, D., Katakowski, M., et al. (2005) Gliosis and Brain Remodeling after Treatment of Stroke in Rats with Marrow Stromal Cells. Glia, 49, 407-417.
http://doi.wiley.com/10.1002/glia.20126
https://doi.org/10.1002/glia.20126
[43]  Chen, J., Li, Y., Katakowski, M., Chen, X., Wang, L., Lu, D., et al. (2003) Intravenous Bone Marrow Stromal Cell Therapy Reduces Apoptosis and Promotes Endogenous Cell Proliferation after Stroke in Female Rat. Journal of Neuroscience Research, 73, 778-786.
http://doi.wiley.com/10.1002/jnr.10691
https://doi.org/10.1002/jnr.10691
[44]  Sasaki, M., Honmou, O., Akiyama, Y., Uede, T., Hashi, K. and Kocsis, J.D. (2001) Transplantation of an Acutely Isolated Bone Marrow Fraction Repairs Demyelinated Adult Rat Spinal Cord Axons. Glia, 35, 26-34.
https://doi.org/10.1002/glia.1067
[45]  Akiyama, Y., Radtke, C. and Kocsis, J.D. (2002) Remyelination of the Rat Spinal Cord by Transplantation of Identified Bone Marrow Stromal Cells. Journal of Neuroscience, 22, 6623-6630.
https://doi.org/10.1523/JNEUROSCI.22-15-06623.2002
[46]  Akiyama, Y., Radtke, C., Honmou, O. and Kocsis, J.D. (2002) Remyelination of the Spinal Cord Following Intravenous Delivery of Bone Marrow Cells. Glia, 39, 229-236.
https://doi.org/10.1002/glia.10102
[47]  Chopp, M., Zhang, X.H., Li, Y., Wang, L., Chen, J., Lu, D., et al. (2000) Spinal Cord Injury in Rat. Neuroreport, 11, 3001-3005.
http://journals.lww.com/00001756-200009110-00035
https://doi.org/10.1097/00001756-200009110-00035
[48]  Hofstetter, C.P., Schwarz, E.J., Hess, D., Widenfalk, J., El Manira, A., Prockop, D.J., et al. (2002) Marrow Stromal Cells form Guiding Strands in the Injured Spinal Cord and Promote Recovery. Proceedings of the National Academy of Sciences of the United States of America, 99, 2199-2204.
https://doi.org/10.1073/pnas.042678299
[49]  Cízková, D., Rosocha, J., Vanicky, I., Jergová, S. and Cízek, M. (2006) Transplants of Human Mesenchymal Stem Cells Improve Functional Recovery after Spinal Cord Injury in the Rat. Cellular and Molecular Neurobiology, 26, 1165-1178.
http://link.springer.com/10.1007/s10571-006-9093-1
https://doi.org/10.1007/s10571-006-9093-1
[50]  Zurita, M. and Vaquero, J. (2004) Functional Recovery in Chronic Paraplegia after Bone Marrow Stromal Cells Transplantation. Neuroreport, 15, 1105-1108.
http://journals.lww.com/00001756-200405190-00004
https://doi.org/10.1097/00001756-200405190-00004
[51]  Li, Y., Chen, J., Wang, L., Zhang, L., et al. (2001) Intracerebral Transplantation of Bone Marrow Stromal Cells in a 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson’s Disease. Neuroscience Letters, 316, 67-70.
https://pubmed.ncbi.nlm.nih.gov/11742717/
https://doi.org/10.1016/S0304-3940(01)02384-9
[52]  Dezawa, M., Takahashi, I., Esaki, M., Takano, M. and Sawada, H. (2001) Sciatic Nerve Regeneration in Rats Induced by Transplantation of in Vitro Differentiated Bone-Marrow Stromal Cells. European Journal of Neuroscience, 14, 1771-1776.
https://onlinelibrary.wiley.com/doi/full/10.1046/j.0953-816x.2001.01814.x
https://doi.org/10.1046/j.0953-816x.2001.01814.x
[53]  Pedram, M.S., Dehghan, M.M., Soleimani, M., Sharifi, D., Marjanmehr, S.H. and Nasiri, Z. (2010) Transplantation of a Combination of Autologous Neural Differentiated and Undifferentiated Mesenchymal Stem Cells into Injured Spinal Cord of Rats. Spinal Cord, 48, 457-463.
https://www.nature.com/sc
https://doi.org/10.1038/sc.2009.153
[54]  Black, I.B. and Woodbury, D. (2001) Adult rat and Human Bone Marrow Stromal Stem Cells Differentiate into Neurons. Blood Cells, Molecules and Diseases, 27, 632-636.
https://pubmed.ncbi.nlm.nih.gov/11482877/
https://doi.org/10.1006/bcmd.2001.0423
[55]  Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., et al. (2002) Human Adipose Tissue Is a Source of Multipotent Stem Cells. Molecular Biology of the Cell, 13, 4279-4295.
https://doi.org/10.1091/mbc.e02-02-0105
[56]  Hung, S., Cheng, H., Pan, C., Tsai, M.J., Kao, L. and Ma, H. (2002) In Vitro Differentiation of Size-Sieved Stem Cells into Electrically Active Neural Cells. Stem Cells, 20, 522-529.
https://pubmed.ncbi.nlm.nih.gov/12456960/
https://doi.org/10.1634/stemcells.20-6-522
[57]  Khanabdali, R., Saadat, A., Fazilah, M., Bazli, K.F.K., Qazi, R., Khalid, R., et al. (2016) Promoting Effect of Small Molecules in Cardiomyogenic and Neurogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells. Drug Design, Development and Therapy, 10, 81-91.
https://doi.org/10.2147/DDDT.S89658
[58]  Hou, L., Cao, H., Wang, D., Wei, G., Bai, C., Zhang, Y., et al. (2003) Induction of Umbilical Cord Blood Mesenchymal Stem Cells into Neuron-Like Cells in Vitro. International Journal of Hematology, 78, 256-261.
https://doi.org/10.1007/BF02983804
[59]  Vaquero, J., Horcajo, C.B., Otero, L., Aguayo, C., de Oya Otero, S. and Zurita, M. (2008) Diferenciación neural de células del estroma de médula ósea humana en presencia de líquido cefalorraquídeo. Trauma, 19, 212-217.
https://dialnet.unirioja.es/servlet/articulo?codigo=3434255
[60]  Nan, C., Guo, L., Zhao, Z., Ma, S., Liu, J., Yan, D., et al. (2016) Tetramethylpyrazine Induces Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells into Neuron-Like Cells in Vitro. International Journal of Oncology, 48, 2287-2294.
https://doi.org/10.3892/ijo.2016.3449
[61]  Deng, W., Prockop, D.J., Obrocka, M. and Fischer, I. (2001) In Vitro Differentiation of Human Marrow Stromal Cells into Early Progenitors of Neural Cells by Conditions That Increase Intracellular Cyclic AMP. Biochemical and Biophysical Research Communications, 282, 148-152.
https://pubmed.ncbi.nlm.nih.gov/11263984/
https://doi.org/10.1006/bbrc.2001.4570
[62]  Ashjian, P.H., Elbarbary, A.S., Edmonds, B., DeUgarte, D., Zhu, M., Zuk, P.A., et al. (2003) In Vitro Differentiation of Human Processed Lipoaspirate Cells into Early Neural Progenitors. Plastic and Reconstructive Surgery, 111, 1922-1931.
http://journals.lww.com/00006534-200305000-00018
https://doi.org/10.1097/01.PRS.0000055043.62589.05
[63]  Long, X., Olszewski, M., Huang, W. and Kletzel, M. (2005) Neural Cell Differentiation in Vitro from Adult Human Bone Marrow Mesenchymal Stem Cells. Stem Cells and Development, 14, 65-69.
https://doi.org/10.1089/scd.2005.14.65
[64]  Tio, M., Tan, K.H., Lee, W., Wang, T.T. and Udolph, G. (2010) Roles of db-cAMP, IBMX and RA in Aspects of Neural Differentiation of Cord Blood Derived Mesenchymal-Like Stem Cells. PLoS ONE, 5, e9398.
https://doi.org/10.1371/journal.pone.0009398
[65]  Benítez-King, G., Riquelme, A., Ortíz-López, L., Berlanga, C., Rodríguez-Verdugo, M.S., Romo, F., et al. (2011) A Non-Invasive Method to Isolate the Neuronal Linage from the Nasal Epithelium from Schizophrenic and Bipolar Diseases. Journal of Neuroscience Methods, 201, 35-45.
https://doi.org/10.1016/j.jneumeth.2011.07.009
[66]  Shahbazi, A., Safa, M., Alikarami, F., Kargozar, S., Asadi, M.H., Joghataei, M.T., et al. (2016) Rapid Induction of Neural Differentiation in Human Umbilical Cord Matrix Mesenchymal Stem Cells by cAMP-Elevating Agents. International Journal of Molecular and Cellular Medicine, 5, 167-177.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125369/
[67]  Alexania, A.R. (2007) Epigenetic Modifiers Promote Efficient Generation of Neural-Like Cells from Bone Marrow-Derived Mesenchymal Cells Grown in Neural Environment. Journal of Cellular Biochemistry, 100, 362-371.
http://doi.wiley.com/10.1002/jcb.21029
https://doi.org/10.1002/jcb.21029
[68]  Alexanian, A.R. (2010) An Efficient Method for Generation of Neural-Like Cells from Adult Human Bone Marrow-Derived Mesenchymal Stem Cells. Regenerative Medicine, 5, 891-900.
https://doi.org/10.2217/rme.10.67
[69]  Zhang, Z and Alexanian, A.R. (2012) Dopaminergic-Like Cells from Epigenetically Reprogrammed Mesenchymal Stem Cells. Journal of Cellular and Molecular Medicine, 16, 2708-2714.
https://doi.org/10.1111/j.1582-4934.2012.01591.x
[70]  Zheng, Y., Huang, C., Liu, F., Lin, H., Yang, X and Zhang, Z. (2017) Comparison of the Neuronal Differentiation Abilities of Bone Marrow-Derived and Adipose Tissue-Derived Mesenchymal Stem Cells. Molecular Medicine Reports, 16, 3877-3886.
https://doi.org/10.3892/mmr.2017.7069
[71]  Fila-Danilow, A., Borkowska, P., Paul-Samojedny, M., Kowalczyk, M and Kowalski, J. (2017) The Influence of TSA and VPA on the in Vitro Differentiation of Bone Marrow Mesenchymal Stem Cells into Neuronal Lineage Cells: Gene Expression Studies. Advances in Hygiene and Experimental Medicine, 71, 236-242.
https://pubmed.ncbi.nlm.nih.gov/28397704/
https://doi.org/10.5604/01.3001.0010.3809
[72]  Goodwin, H.S., Bicknese, A.R., Chien, S.N., Bogucki, B.D., Oliver, D.A., Quinn, C.O., et al. (2001) Multilineage Differentiation Activity by Cells Isolated from Umbilical Cord Blood: Expression of Bone, Fat, and Neural Markers. Biology of Blood and Marrow Transplantation, 7, 581-588.
https://pubmed.ncbi.nlm.nih.gov/11760145/
https://doi.org/10.1053/bbmt.2001.v7.pm11760145
[73]  Peng, J., Wang, Y., Zhang, L., Zhao, B., Zhao, Z., Chen, J.F., et al. (2011) Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells Differentiate into a Schwann-Cell Phenotype and Promote Neurite Outgrowth in Vitro. Brain Research Bulletin, 84, 235-243.
https://doi.org/10.1016/j.brainresbull.2010.12.013
[74]  Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., et al. (2002) Pluripotency of Mesenchymal Stem Cells Derived from Adult Marrow. Nature, 418, 41-49.
https://doi.org/10.1038/nature00870
[75]  Jin, K., Mao, X.O., Batteur, S., Sun, Y and Greenberg, D.A. (2003) Induction of Neuronal Markers in Bone Marrow Cells: Differential Effects of Growth Factors and Patterns of Intracellular Expression. Experimental Neurology, 184, 78-89.
https://doi.org/10.1016/S0014-4886(03)00133-X
[76]  Tropel, P., Platet, N., Platel, J.-C., Noel, D., Albrieux, M., Benabid, A.-L., et al. (2006) Functional Neuronal Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells, 24, 2868-2876.
https://pubmed.ncbi.nlm.nih.gov/16902198/
https://doi.org/10.1634/stemcells.2005-0636
[77]  Trzaska, K.A., Kuzhikandathil, E.V and Rameshwar, P. (2007) Specification of a Dopaminergic Phenotype from Adult Human Mesenchymal Stem Cells. Stem Cells, 25, 2797-2808.
https://stemcellsjournals.onlinelibrary.wiley.com/doi/full/10.1634/stemcells.2007-0212
https://doi.org/10.1634/stemcells.2007-0212
[78]  Datta, I., Mishra, S., Mohanty, L., Pulikkot, S and Joshi, P.G. (2011) Neuronal Plasticity of Human Wharton’S Jelly Mesenchymal Stromal Cells to the Dopaminergic Cell Type Compared with Human Bone Marrow Mesenchymal Stromal Cells. Cytotherapy, 13, 918-932.
https://doi.org/10.3109/14653249.2011.579957
[79]  Chun, S.Y., Soker, S., Jang, Y.J., Kwon, T.G and Yoo, E.S. (2016) Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-Like Cells in Vitro. Journal of Korean Medical Science, 31, 171-177.
https://doi.org/10.3346/jkms.2016.31.2.171
[80]  Wang, J., Wang, X., Sun, Z., Wang, X., Yang, H., Shi, S., et al. (2010) Stem Cells from Human-Exfoliated Deciduous Teeth Can Differentiate into Dopaminergic Neuron-Like Cells. Stem Cells and Development, 19, 1375-1383.
https://doi.org/10.1089/scd.2009.0258
[81]  Wang, N., Sun, C., Huo, S., Zhang, Y., Zhao, J., Zhang, S., et al. (2008) Cooperation of Phosphatidylcholine-Specific Phospholipase C and Basic Fibroblast Growth Factor in the Neural Differentiation of Mesenchymal Stem Cells in Vitro. International Journal of Biochemistry and Cell Biology, 40, 294-306.
https://doi.org/10.1016/j.biocel.2007.08.003
[82]  Marei, H.E.S., El-Gamal, A., Althani, A., Afifi, N., Abd-Elmaksoud, A., Farag, A., et al. (2018) Cholinergic and Dopaminergic Neuronal Differentiation of Human Adipose Tissue Derived Mesenchymal Stem Cells. Journal of Cellular Physiology, 233, 936-945.
http://doi.wiley.com/10.1002/jcp.25937
https://doi.org/10.1002/jcp.25937
[83]  Mareschi, K., Rustichelli, D., Comunanza, V., De Fazio, R., Cravero, C., Morterra, G., et al. (2009) Multipotent Mesenchymal Stem Cells from Amniotic Fluid Originate Neural Precursors with Functional Voltage-Gated Sodium Channels. Cytotherapy, 11, 534-547.
https://pubmed.ncbi.nlm.nih.gov/19548144/
https://doi.org/10.1080/14653240902974024
[84]  Jang, S., Cho, H.H., Cho, Y.B., Park, J.S and Jeong, H.S. (2010) Functional Neural Differentiation of Human Adipose Tissue-Derived Stem Cells Using bFGF and Forskolin. BMC Molecular and Cell Biology, 11, Article No. 25.
https://doi.org/10.1186/1471-2121-11-25
[85]  Feng, N., Han, Q., Li, J., Wang, S., Li, H., Yao, X., et al. (2014) Generation of Highly Purified Neural Stem Cells from Human Adipose-Derived Mesenchymal Stem Cells by Sox1 Activation. Stem Cells and Development, 23, 515-529.
https://doi.org/10.1089/scd.2013.0263
[86]  Yu, J.H., Kim, M.-S., Lee, M.-Y., Lee, J.Y., Seo, J.H and Cho, S.-R. (2014) GABAergic Neuronal Differentiation Induced by Brain-Derived Neurotrophic Factor in Human Mesenchymal Stem Cells. Animal Cells and Systems (Seoul), 18, 17-24.
http://www.tandfonline.com/doi/abs/10.1080/19768354.2013.877076
https://doi.org/10.1080/19768354.2013.877076
[87]  Jahan, S., Kumar, D., Kumar, A., Rajpurohit, C.S., Singh, S., Srivastava, A., et al. (2017) Neurotrophic Factor Mediated Neuronal Differentiation of Human Cord Blood Mesenchymal Stem Cells and Their Applicability to Assess the Developmental Neurotoxicity. Biochemical and Biophysical Research Communications, 482, 961-967.
https://doi.org/10.1016/j.bbrc.2016.11.140
[88]  Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., et al. (2000) Adult Bone Marrow Stromal Cells Differentiate into Neural Cells in Vitro. Experimental Neurology, 164, 247-256.
https://pubmed.ncbi.nlm.nih.gov/10915564/
https://doi.org/10.1006/exnr.2000.7389
[89]  Joannides, A., Gaughwin, P., Scott, M., Watt, S., Compston, A and Chandran, S. (2003) Postnatal Astrocytes Promote Neural Induction from Adult Human Bone Marrow-Derived Stem Cells. Journal of Hematotherapy and Stem Cell Research, 12, 681-688.
https://pubmed.ncbi.nlm.nih.gov/14977477/
https://doi.org/10.1089/15258160360732704
[90]  Fu, Y.-S., Shih, Y.-T., Cheng, Y.-C and Min, M.-Y. (2004) Transformation of Human Umbilical Mesenchymal Cells into Neurons in Vitro. Journal of Biomedical Science, 11, 652-660.
https://link.springer.com/article/10.1007/BF02256131
https://doi.org/10.1007/BF02256131
[91]  Fu, Y.-S., Cheng, Y.-C., Lin, M.-Y.A., Cheng, H., Chu, P.-M., Chou, S.-C., et al. (2006) Conversion of Human Umbilical Cord Mesenchymal Stem Cells in Wharton’s Jelly to Dopaminergic Neurons In Vitro: Potential Therapeutic Application for Parkinsonism. Stem Cells, 24, 115-124.
https://stemcellsjournals.onlinelibrary.wiley.com/doi/full/10.1634/stemcells.2005-0053
https://doi.org/10.1634/stemcells.2005-0053
[92]  Zurita, M., Vaquero, J., Oya, S and Miguel, M. (2005) Schwann Cells Induce Neuronal Differentiation of Bone Marrow Stromal Cells. Neuroreport, 16, 505-508.
http://journals.lww.com/00001756-200504040-00017
https://doi.org/10.1097/00001756-200504040-00017
[93]  Zurita, M., Vaquero, J., Oya, S., Bonilla, C and Aguayo, C. (2007) Neurotrophic Schwann-Cell Factors Induce Neural Differentiation of Bone Marrow Stromal Cells. Neuroreport, 18, 1713-1717.
http://journals.lww.com/00001756-200710290-00016
https://doi.org/10.1097/WNR.0b013e3282f0d3b0
[94]  Krampera, M., Marconi, S., Pasini, A., Galiè, M., Rigotti, G., Mosna, F., et al. (2007) Induction of Neural-Like Differentiation in Human Mesenchymal Stem Cells Derived from Bone Marrow, Fat, Spleen and Thymus. Bone, 40, 382-390.
https://pubmed.ncbi.nlm.nih.gov/17049329/
https://doi.org/10.1016/j.bone.2006.09.006
[95]  Wislet-Gendebien, S., Hans, G., Leprince, P., Rigo, J.-M., Moonen, G. and Rogister, B. (2005) Plasticity of Cultured Mesenchymal Stem Cells: Switch from Nestin-Positive to Excitable Neuron-Like Phenotype. Stem Cells, 23, 392-402.
https://stemcellsjournals.onlinelibrary.wiley.com/doi/full/10.1634/stemcells.2004-0149
https://doi.org/10.1634/stemcells.2004-0149
[96]  Lo Furno, D., Mannino, G., Giuffrida, R., Gili, E., Vancheri, C., Tarico, M.S., et al. (2018) Neural Differentiation of Human Adipose-Derived Mesenchymal Stem Cells Induced by Glial Cell Conditioned Media. Journal of Cellular Physiology, 233, 7091-7100.
https://doi.org/10.1002/jcp.26632
[97]  Wei, Z.J., Fan, B.Y., Liu, Y., Ding, H., Tang, H.S., Pan, D.Y., et al. (2019) MicroRNA Changes of Bone Marrow-Derived Mesenchymal Stem Cells Differentiated into Neuronal-Like Cells by Schwann Cell-Conditioned Medium. Neural Regeneration Research, 14, 1462-1469.
https://doi.org/10.4103/1673-5374.253532
[98]  Jia, Y., Sun, J., Zhou, Y., Zhu, X., Zhang, B. and Lian, Y. (2007) Effects of Notch-1 Signalling Pathway on Differentiation of Marrow Mesenchymal Stem Cells into Neurons in Vitro. Neuroreport, 18, 1443-1447.
https://doi.org/10.1097/WNR.0b013e3282ef7753
[99]  Trzaska, K.A., Reddy, B.Y., Munoz, J.L., Li, K.Y., Ye, J.H and Rameshwar, P. (2008) Loss of RE-1 Silencing Factor in Mesenchymal Stem Cell-Derived Dopamine Progenitors Induces Functional Maturity. Molecular and Cellular Neuroscience, 39, 285-290.
https://pubmed.ncbi.nlm.nih.gov/18691653/
https://doi.org/10.1016/j.mcn.2008.07.006
[100]  Yang, Y., Li, Y., Lv, Y., Zhang, S., Chen, L., Bai, C., et al. (2008) NRSF Silencing Induces Neuronal Differentiation of Human Mesenchymal Stem Cells. Experimental Cell Research, 314, 2257-2265.
https://pubmed.ncbi.nlm.nih.gov/18570921/
https://doi.org/10.1016/j.yexcr.2008.04.008
[101]  Barzilay, R., Ben-Zur, T., Bulvik, S., Melamed, E and Offen, D. (2009) Lentiviral Delivery of LMX1a Enhances Dopaminergic Phenotype in Differentiated Human Bone Marrow Mesenchymal Stem Cells. Stem Cells and Development, 18, 591-602.
https://doi.org/10.1089/scd.2008.0138
[102]  Yan, M., Sun, M., Zhou, Y., Wang, W., He, Z., Tang, D., et al. (2013) Conversion of Human Umbilical Cord Mesenchymal Stem Cells in Wharton’s Jelly to Dopamine Neurons Mediated by the Lmx1a and Neurturin In Vitro: Potential Therapeutic Application for Parkinson’s Disease in a Rhesus Monkey Model. PLoS ONE, 8, e0242032.
https://doi.org/10.1371/journal.pone.0064000
[103]  Wang, S., Kan, Q., Sun, Y., Han, R., Zhang, G., Peng, T., et al. (2013) Caveolin-1 Regulates Neural Differentiation of Rat Bone Mesenchymal Stem Cells into Neurons by Modulating Notch Signaling. International Journal of Developmental Neuroscience, 31, 30-35.
https://pubmed.ncbi.nlm.nih.gov/23031836/
https://doi.org/10.1016/j.ijdevneu.2012.09.004
[104]  Park, H.-W., Cho, J.-S., Park, C.-K., Jung, S.J., Park, C.-H., Lee, S.-J., et al. (2012) Directed Induction of Functional Motor Neuron-Like Cells from Genetically Engineered Human Mesenchymal Stem Cells. PLoS ONE, 7, e35244.
https://doi.org/10.1371/journal.pone.0035244
[105]  Dezawa, M., Kanno, H., Hoshino, M., Cho, H., Matsumoto, N., Itokazu, Y., et al. (2004) Specific Induction of Neuronal Cells from Bone Marrow Stromal Cells and Application for Autologous Transplantation. Journal of Clinical Investigation, 113, 1701-1710.
https://doi.org/10.1172/JCI200420935
[106]  Liu, Q., Cheng, G., Wang, Z., Zhan, S., Xiong, B and Zhao, X. (2015) Bone Marrow-Derived Mesenchymal Stem Cells Differentiate into Nerve-Like Cells in Vitro after Transfection with Brain-Derived Neurotrophic Factor Gene. In Vitro Cellular & Developmental Biology—Animal, 51, 319-327.
https://doi.org/10.1007/s11626-015-9875-1
[107]  Jing, L., Jya, Y., Lu, J., Han, R., Li, J., Wang, S., et al. (2011) MicroRNA-9 Promotes Differentiation of Mouse Bone Mesenchymal Stem Cells into Neurons by Notch Signaling. Neuroreport, 22, 206-211.
https://pubmed.ncbi.nlm.nih.gov/21346646/
https://doi.org/10.1097/WNR.0b013e328344a666
[108]  Wu, R., Wang, N., Li, M., Zang, W and Xu, Y. (2013) Experimental Study on the Facilitative Effects of miR-125b on the Differentiation of Rat Bone Marrow Mesenchymal Stem Cells into Neuron-Like Cells. Cell Biology International, 37, 812-819.
http://doi.wiley.com/10.1002/cbin.10103
https://doi.org/10.1002/cbin.10103
[109]  Duan, P., Sun, S., Li, B., Huang, C., Xu, Y., Han, X., et al. (2014) miR-29a Modulates Neuronal Differentiation through Targeting REST in Mesenchymal Stem Cells. PLoS ONE, 9, e97684.
https://doi.org/10.1371/journal.pone.0097684
[110]  Han, L., Wang, Y., Wang, L., Guo, B., Pei, S and Jia, Y. (2018) MicroRNA let-7f-5p Regulates Neuronal Differentiation of Rat Bone Marrow Mesenchymal Stem Cells by Targeting Par6α. Biochemical and Biophysical Research Communications, 495, 1476-1481.
https://doi.org/10.1016/j.bbrc.2017.11.024
[111]  Takeda, Y.S and Xu, Q. (2015) Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells. PLoS ONE, 10, e0135111.
https://doi.org/10.1371/journal.pone.0135111
[112]  Alexanian, A.R., Liu, Q.S and Zhang, Z. (2013) Enhancing the Efficiency of Direct Reprogramming of Humanmesenchymal Stem Cells into Mature Neuronal-Like Cells with Thecombination of Small Molecule Modulators of Chromatin Modifyingenzymes, SMAD Signaling and Cyclic Adenosine Monophosphate Levels. International Journal of Biochemistry and Cell Biology, 45, 1633-1638.
https://pubmed.ncbi.nlm.nih.gov/23665234/
https://doi.org/10.1016/j.biocel.2013.04.022
[113]  Madhu, V., Dighe, A.S., Cui, Q and Deal, D.N. (2016) Dual Inhibition of Activin/Nodal/TGF-β and BMP Signaling Pathways by sb431542 and Dorsomorphin Induces Neuronal Differentiation of Human Adipose Derived Stem Cells. Stem Cells International, 2016, Article ID: 1035374.
https://doi.org/10.1155/2016/1035374
[114]  Park, J., Lee, N., Lee, J., Choe, E.K., Kim, M.K., Lee, J., et al. (2017) Small Molecule-Based Lineage Switch of Human Adipose-Derived Stem Cells into Neural Stem Cells and Functional GABAergic Neurons. Scientific Reports, 7, Article No. 10166.
https://app.dimensions.ai/details/publication/pub.1091356686
https://doi.org/10.1038/s41598-017-10394-y
[115]  Hu, Y., Li, X., Huang, G., Wang, J. and Lu, W. (2019) Fasudil May Induce the Differentiation of Bone Marrow Mesenchymal Stem Cells into Neuron?Like Cells via the Wnt/β-Catenin Pathway. Molecular Medicine Reports, 19, 3095-3104.
https://pubmed.ncbi.nlm.nih.gov/30816472/
https://doi.org/10.3892/mmr.2019.9978
[116]  Sanchez-Ramos, J.R., Song, S., Kamath, S.G., Zigova, T., Willing, A., Cardozo-Pelaez, F., et al. (2001) Expression of Neural Markers in Human Umbilical Cord Blood. Experimental Neurology, 171, 109-115.
https://linkinghub.elsevier.com/retrieve/pii/S0014488601977489
https://doi.org/10.1006/exnr.2001.7748
[117]  Locatelli, F., Corti, S., Donadoni, C., Guglieri, M., Capra, F., Strazzer, S., et al. (2003) Neuronal Differentiation of Murine Bone Marrow Thy-1- and Sca-1-Positive Cells. Journal of Hematotherapy & Stem Cell Research, 12, 727-734.
https://doi.org/10.1089/15258160360732740
[118]  Kondo, T., Johnson, S.A., Yoder, M.C., Romand, R and Hashino, E. (2005) Sonic Hedgehog and Retinoic Acid Synergistically Promote Sensory Fate Specification from Bone Marrow-Derived Pluripotent Stem Cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 4789-4794.
https://doi.org/10.1073/pnas.0408239102
[119]  Cho, K.J., Trzaska, K.A., Greco, S.J., McArdle, J., Wang, F.S., Ye, J.-H., et al. (2005) Neurons Derived from Human Mesenchymal Stem Cells Show Synaptic Transmission and Can Be Induced to Produce the Neurotransmitter Substance P by Interleukin-1α. Stem Cells, 23, 383-391.
https://stemcellsjournals.onlinelibrary.wiley.com/doi/full/10.1634/stemcells.2004-0251
https://doi.org/10.1634/stemcells.2004-0251
[120]  Hermann, A., List, C., Habisch, H.J., Vukicevic, V., Ehrhart-Bornstein, M., Brenner, R., et al. (2010) Age-Dependent Neuroectodermal Differentiation Capacity of Human Mesenchymal Stromal Cells: Limitations for Autologous Cell Replacement Strategies. Cytotherapy, 12, 17-30.
https://pubmed.ncbi.nlm.nih.gov/19878082/
https://doi.org/10.3109/14653240903313941
[121]  Hermann, A., Liebau, S., Gastl, R., Fickert, S., Habisch, H.-J., Fiedler, J., et al. (2006) Comparative Analysis of Neuroectodermal Differentiation Capacity of Human Bone Marrow Stromal Cells Using Various Conversion Protocols. Journal of Neuroscience Research, 83, 1502-1514.
http://doi.wiley.com/10.1002/jnr.20840
https://doi.org/10.1002/jnr.20840
[122]  Gong, M., Bi, Y., Jiang, W., Zhang, Y., Chen, L., Hou, N., et al. (2013) Retinoic Acid Receptor Beta Mediates All-Trans Retinoic Acid Facilitation of Mesenchymal Stem Cells Neuronal Differentiation. International Journal of Biochemistry and Cell Biology, 45, 866-875.
https://doi.org/10.1016/j.biocel.2013.01.002
[123]  Wang, N., Xu, Y., Qin, T., Wang, F.P., Ma, L.L., Luo, X.G., et al. (2013) Myocardin-Related Transcription Factor-A Is a Key Regulator in Retinoic Acid-Induced Neural-Like Differentiation of Adult Bone Marrow-Derived Mesenchymal Stem Cells. Gene, 523, 178-186.
https://doi.org/10.1016/j.gene.2013.03.043
[124]  Gao, Y., Bai, C., Wang, K., Sun, B., Guan, W and Zheng, D. (2014) All-Trans Retinoic Acid Promotes Nerve Cell Differentiation of Yolk Sac-Derived Mesenchymal Stem Cells. Applied Biochemistry and Biotechnology, 174, 682-692.
http://link.springer.com/10.1007/s12010-014-1100-2
https://doi.org/10.1007/s12010-014-1100-2
[125]  Lu, W., Duan, D., Ackbarkhan, Z., Lu, M and Huang, M.L. (2017) Differentiation of Human Olfactory Mucosa Mesenchymal Stem Cells into Photoreceptor Cells in Vitro. International Journal of Ophthalmology, 10, 1504-1509.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133