|
基于高精地图的道路场景三维建模
|
Abstract:
高精道路地图是智能交通系统的重要组成部分,对于智能驾驶仿真、测试、信息互联等关键新技术具有重要意义。本文提出了一种基于高精地图数据的道路三维建模方法,采取BIM部件装配思路,分别对道路体、道路标线以及道路设施进行建模,拼装完成道路场景模型。根据不同对象的建模特性,提出了平纵横建模方法、外轮廓建模方法、空间交集建模方法以及模型参数化方法。以武汉市二环线部分道路为实验区域,使用高精地图数据进行建模实验。结果表明,本方法可以使用高精地图数据构造出典型道路场景的三维模型,建成的模型表达细节度高,真实性强,具备较好的可视化效果和应用价值。
As an important part of the intelligent transportation systems, the high precision road map is of great significance for key new technologies such as intelligent driving simulation, testing, and in-formation interconnection. This paper proposes a road three-dimensional modeling method based on high-precision map data, divided into two stages: data preprocessing and modeling. In the preprocessing stage, through coordinate projection transformation and datum point setting, the high-precision map data can meet the modeling requirements. In the modeling stage, under the idea of BIM component assembly, the method divides the road scene model into road bodies, markings, and facilities. In the aspect of road modeling, the modeling scheme puts forward two methods for regular and irregular roads respectively. For regular roads, the former method uses the centerline of the road to reproduce the fluctuation and position of the road section and takes the cross-section design to express the outer contour of the road. For irregular roads, the latter method chooses the outer profile data of the road to control the shape. In the aspect of road markings, the concepts of “thickness control body” and “super thick body” are proposed, and the spatial intersection is used to model the pavement markings. The marking models generated by this method fit perfectly with the road plane. Moreover, for road facilities modeling, the method completes the appearance restriction of a single facility model by controlling the height and angle. Using the location data of facilities, similar facilities with fixed shapes can be built in batches. After modeling each component by the above method, the road components are assembled and rendered to complete the modeling of the whole road scene. Taking part of the second ring road in Wuhan as the experimental area, this paper uses high-precision map data for modeling experiments. The target test section contains the classic scenes of the above three parts. The results show that this method can use high-precision map data to construct the three-dimensional model of a typical road scene. The built model has high expression detail, strong authenticity, and has good visualization effect and application value.
[1] | 刘经南, 詹骄, 郭迟, 等. 智能高精地图数据逻辑结构与关键技术[J]. 测绘学报, 2019, 48(8): 939-953. |
[2] | Potó, V., Somogyi, A., Lovas, T., Barsi, A., Szalay, Z. and Tihanyi, V. (2017) Creating HD Map for Autonomous Vehi-cles—A Pilot Study. Advanced Manufacturing and Repairing Technologies in Vehicle Industry, Visegrad, 17-19 May 2017, 127-130. |
[3] | 张冰, 李欣, 万欣欣. 从数字孪生到数字工程建模仿真迈入新时代[J]. 系统仿真学报, 2019, 31(3): 369-376. |
[4] | 朱庆. 三维GIS及其在智慧城市中的应用[J]. 地球信息科学学报, 2014, 16(2): 151-157. |
[5] | 杨玉荣, 李峰. 基于激光点云扫描的高精导航地图关键技术研究[J]. 现代计算机(专业版), 2018(9): 23-26. |
[6] | Yang, B., Dong, Z., Liang, F. and Liu, Y. (2016) Automatic Registration of Large-Scale Urban Scene Point Clouds Based on Semantic Feature Points. ISPRS Journal of Photogrammetry and Remote Sensing, 113, 43-58. |
[7] | Lee, J., Lee, K., Yoo, A. and Moon, C. (2020) Design and Implementation of Edge-Fog-Cloud System through HD Map Generation from LiDAR Data of Autonomous Vehicles. Electronics, 9, Article No. 2084. |
[8] | 余卓渊, 闾国年, 张夕宁, 等. 全息高精度导航地图: 概念及理论模型[J]. 地球信息科学学报, 2020, 22(4): 760-771. |
[9] | 詹骄, 郭迟, 雷婷婷, 等. 自动驾驶地图的数据标准比较研究[J]. 中国图象图形学报, 2021, 26(1): 36-48. |
[10] | 刘经南, 吴杭彬, 郭迟, 等. 高精度道路导航地图的进展与思考[J]. 中国工程科学, 2018, 20(2): 99-105. |
[11] | Eciolaza, L., Pereira-Fari, A.M. and Trivino, G. (2013) Automatic Linguistic Reporting in Driving Simula-tion Environments. Applied Soft Computing Journal, 13, 3956-3967. |
[12] | Dupuis, M., Strobl, M. and Grezlikowski, H. (2010) OpenDRIVE 2010 and Beyond—Status and Future of the De Facto Standard for the Description of Road Net-works. Proceedings of the Driving Simulation—Conference Europe, 231-242. |
[13] | Punzo, V. and Ciuffo, B. (2011) In-tegration of Driving and Traffic Simulation: Issues and First Solutions. IEEE Transactions on Intelligent Transportation Systems, 12, 354-363. https://doi.org/10.1109/TITS.2010.2095846 |
[14] | Ryujiro, F., Naohiko, I. and Hiroto, I. (2007) Road Scene Map Creating Device, Method, and Program: EP, EP1860628 A1. |
[15] | 许振辉, 秦涛, 刘士宽. 三维道路建模及可视化方法研究[J]. 公路, 2011(3): 161-164. |
[16] | 张慧智, 刘如飞, 孙志阳. 基于车载激光点云的三维道路精细化建模[J]. 测绘与空间地理信息, 2018, 41(11): 100-102, 109. |
[17] | 梁其洋, 潘瑜春, 吴保国. 基于GIS数据的城市路网快速三维建模[J]. 电子测量技术, 2018, 41(9): 69-74. |
[18] | 赵雨琪, 牟乃夏, 张灵先. 利用CityEngine进行三维校园参数化精细建模[J]. 测绘通报, 2017(1): 83-86+111. |