全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

RBF与BP神经网络对逆流鼓泡板片蒸发式冷凝器传热性能预测对比
Comparison of RBF and BP Neural Network Onheat Transfer Performance Prediction of Evaporative Condenser with Countercurrent Bubbling Plate

DOI: 10.12677/MOS.2022.111008, PP. 88-100

Keywords: 鼓泡板片,蒸发式冷凝器,RBF神经网络,BP神经网络
Bubble Sheets
, Evaporative Type Condenser, RBF Neural Network, BP Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

鼓泡板片蒸发式冷凝器是一种较为新型的蒸发式冷凝器,按喷淋水与空气流向不同分为逆流、横流、混流等形式,其热质传递过程较为复杂。依据逆流鼓泡板片性能测试实验,以板间距、喷淋水流量、截面风速、空气进口干湿球温度、板片壁面平均温度为输入变量,以复合传热系数为输出变量,通过RBF和BP两种神经网络模型,对鼓泡板片外空气侧的复合传热系数进行预测。比较这两种神经网络模型预测值和真实值的主要评价指标(决定系数R2、平均相对误差MRE、均方根误差RMSE),结果表明RBF神经网络预测性能优于BP神经网络,更适合用于鼓泡板片蒸发式冷凝器的传热性能预测,将有助于对鼓泡板片蒸发式冷凝器的研究和产品开发。
Bubbling plate evaporative condenser is a relatively new type of evaporative condenser. According to the different flow directions of spray water and air, it can be divided into counter-current, cross-flow and mixed flow forms, and the heat and mass transfer process is relatively complex. Countercurrent bubble plate based on performance test experiment, plate spacing, spray water flow, cross section of dry wet bulb temperature, wind speed, the air inlet plate wall average temperature as input variables, with compound heat transfer coefficient for the output variable, by two RBF and BP neural network model, the bubble plate predict compound heat transfer coefficient of the outside air side. The main evaluation indexes (determination coefficient R2, average relative error MRE, root mean square error RMSE) of the predicted and real values of the two neural net-work models were compared. The results show that RBF neural network has better prediction performance than BP neural network, and it is more suitable for the prediction of heat transfer performance of evaporative condenser with bubbling-plate plate. It will be helpful to the research and product development of evaporative bubbling plate condenser.

References

[1]  龚毅, 刘旭, 杨雅浓, 等. 内翅板蒸发式冷凝器降膜流动与传热特性[J]. 制冷学报, 2016, 37(4): 20-26.
[2]  简弃非, 王红根, 李志明, 等. 蒸发式冷凝器凹凸型板片间传热特性实验与理论分析[J]. 制冷与空调(四川), 2016, 30(5): 509-514.
[3]  孙荷静. 波纹板蒸发式冷凝器流体流动特性及传热实验研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2010.
[4]  席鹏飞, 章立新, 张坤龙, 等. 基于BP神经网络的横流式蒸发冷凝器鼓泡式板片传热性能预测[J]. 暖通空调, 2021, 51(4): 136-140+129.
[5]  Wei, J., Zhao, J.L., Wei, L.S., et al. (2000) The Improvements of BP Neural Network Learning Algorithm. WCC 2000-ICSP 2000. 2000 5th International Conference on Signal Pro-cessing Proceedings. 16th World Computer Congress 2000, Beijing, 21-25 August, 2000.
[6]  刘津, 章立新, 沈艳, 等. 基于BP神经网络的闭塔换热管壁污垢热阻预测[J]. 热能动力工程, 2020, 35(12): 66-71.
[7]  李刚, 孟增. 基于RBF神经网络模型的结构可靠度优化方法[J]. 应用数学和力学, 2014, 35(11): 1271-1279.
[8]  Wei, G.S., Ren, J.Q. and Hong, W.P. (2012) Scheme Design and Analysis of Variable Condition of Evaporative Condenser for Steam Condensing of Steam Feeding Water Pump for 1000MW Air-Cooled Unit. Energy Procedia, 17, 1177-1184.
https://doi.org/10.1016/j.egypro.2012.02.224
[9]  Kalogirou, S.A. (2000) Applications of Artificial Neu-ral-Networks for Energy Systems. Applied Energy, 67, 17-35.
https://doi.org/10.1016/S0306-2619(00)00005-2
[10]  Gholamabbas, S., Saeed, N., Mehran, A., et al. (2020) En-ergy and Exergy Evaluation of the Evacuated Tube Solar Collector Using Cu2O/Water Nanofluid Utilizing ANN Meth-ods. Sustainable Energy Technologies and Assessments, 37, 100578.
https://doi.org/10.1016/j.seta.2019.100578
[11]  Ghritlahre, H.K. and Prasad, R.K. (2018) Application of ANN Technique to Predict the Performance of Solar Collector Systems—A Review. Renewable and Sustainable Energy Re-views, 84, 75-88.
https://doi.org/10.1016/j.rser.2018.01.001
[12]  Sideratos, G., Nikos, D. and Hatziargyriou, A. (2020) Distributed Memory RBF-Based Model for Variable Generation Forecasting. International Journal of Electrical Power and Energy Systems, 120, 106041.
https://doi.org/10.1016/j.ijepes.2020.106041
[13]  Elsheikh, A.H., Sharshirc, S.W., et al. (2019) Modeling of Solar Energy Systems Using Artificial Neural Network: A Comprehensive Review. Solar Energy, 180, 622-639.
https://doi.org/10.1016/j.solener.2019.01.037
[14]  Wang, L.C., Kisi, O., Zounemat-Kermani, M., et al. (2016) Solar Radiation Prediction Using Different Techniques: Model Evaluation and Comparison. Renewable and Sustainable Energy Reviews, 61, 384-397.
https://doi.org/10.1016/j.rser.2016.04.024
[15]  Ghritlahre, H.K. and Prasad, R.K. (2018) Investigation of Thermal Performance of Unidirectional Flow Porous Bed Solar Air Heater Using MLP, GRNN, and RBF Models of ANN Tech-nique. Thermal Science and Engineering Progress, 6, 226-235.
https://doi.org/10.1016/j.tsep.2018.04.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133