全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非线性梁振动偏微分方程求解的L-稳定方法
L-Stable Method for Solving Partial Differential Equations of Nonlinear Beam Vibration

DOI: 10.12677/AAM.2022.111006, PP. 33-41

Keywords: 梁振动偏微分方程,微分–代数方程,L-稳定方法,非线性,稳定性
Partial Differential Equation of Beam Vibration
, Differential Algebraic Equation, L-Stable Method, Nonlinear, Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于高阶非线性梁振动偏微分方程的一般形式,构造了数值求解的L-稳定格式。首先,选取三角插值基函数,基于插值定理进行空间离散,将带有初边值条件的偏微分方程求解问题转化为微分–代数方程求解。然后在时间区间上构造L-稳定求解格式进行求解。以无轴向运动简支梁在外部激励下的强迫振动方程为例进行数值仿真,对梁的位移轨迹、边界条件及系统能量进行探究,并与龙格–库塔法、微分求积法进行对比,结果表明,L-稳定方法可以在较大步长下满足边界,位移轨迹与模型方程一致,在计算精度和稳定性上都有较好的体现。
The general form of higher order nonlinear partial differential equation of beam vibration was given, and the solution method based on L-stable scheme was studied. Firstly, the triangular interpolation basis function was selected to discretize the space based on the interpolation theorem, and the problem of solving partial differential equations with initial boundary conditions was transformed into solving differential-algebraic equation. Then the L-stable solution scheme was constructed in the time interval. The forced vibration equation of a simply supported beam without axial motion subject to external excitation was taken as an example; the displacement trajectory, boundary conditions and system energy of the beam were studied, and compared with Runge-Kutta method and differential quadrature method. The results show that the L-stable method can satisfy the boundary conditions in large step size, the displacement trajectory is consistent with the model equation, and it has good performance in calculation accuracy and stability.

References

[1]  陈紫君. 动态边界条件中具有干扰的Euler-Bernoulli梁方程能稳性分析[D]: [硕士学位论文]. 重庆: 重庆大学, 2019.
[2]  Ball, J.M. (1973) Initial-Boundary Value Problems for an Extensible Beam. Journal of Mathematical Analysis & Applications, 42, 61-90.
[3]  Al-Bedoor, B.O. and Khulief, Y.A. (1996) An Approximate Analytical Solution of Beam Vibrations during Axial Motion. Journal of Sound & Vibration, 192, 159-171.
https://doi.org/10.1006/jsvi.1996.0181
[4]  Pellicano, F. and Vestroni, F. (2002) Complex Dynamics of High-Speed Axially Moving Systems. Journal of Sound & Vibration, 258, 31-44.
https://doi.org/10.1006/jsvi.2002.5070
[5]  李晓军, 陈立群. 关于两端固定轴向运动梁的横向振动[J]. 振动与冲击, 2005, 24(1): 22-23.
[6]  牛丽芳, 段周波. 一类弯曲与扭转联合作用下的薄壁梁系统的初边值问题[J]. 中北大学学报(自然科学版), 2012, 33(1): 15-19.
[7]  杨洋, 姚文娟. 不同模量铁木辛柯梁的自由振动特性分析[J]. 上海大学学报(自然科学版), 2019, 25(6): 978-989.
[8]  Dahlquist, G.G. (1963) A Special Stability Problem for Linear Multistep Methods. BIT Numerical Mathematics, 3, 27-43.
https://doi.org/10.1007/BF01963532
[9]  Gear, C.W. (1963) The Automatic Integration of Stiff Ordinary Differential Equations. North Holland Publishing Company, Amsterdam.
[10]  向开理, 张建国. 一类求解Stiff方程高精度L-稳定的显示单步方法[J]. 西南石油学院学报, 1994, 16(1): 102-109.
[11]  朱方生. 一类具有L稳定和B稳定的Runge-Kutta方法[J]. 数学杂志, 2001, 21(2): 183-188.
[12]  吴新元, 欧阳梓祥, 吴忠麟. 解刚性常微分方程组L-稳定的二阶显式单步法及数值试验[J]. 高等学校计算数学学报, 1997, 19(1): 64-69.
[13]  Hairer, E. and Wanner, G. (2006) Solving Ordinary Differential Equations II. Science Press, Beijing.
[14]  吴志桥. L-稳定格式求解结构动力学方程和多体系统动力学方程[D]: [博士学位论文]. 长沙: 国防科学技术大学, 2009.
[15]  周惠蒙, 谭晓晶, 吴斌, 等. 基于L稳定实时协调算法的等效力控制方法[J]. 地震工程与工程振动, 2014(s1): 758-762.
[16]  许士菊, 王长华. 梁振动方程的一个稳定的有限差分近似[J]. 吉林化工学院学报, 2007, 24(1): 79-81.
[17]  Chang, J.R., Lin, R.J., Huang, R.J. and Choi, S.T. (2010) Vibration and Stability of an Axially Moving Rayleigh Beam. Applied Mathematical Modelling, 34, 1482-1497.
https://doi.org/10.1016/j.apm.2009.08.022
[18]  Zhang, W., Wang, D.M. and Yao, M.H. (2014) Using Fourier Differential Quadrature Method to Analyze Transverse Nonlinear Vibrations of an Axially Accelerating Viscoelastic Beam. Nonlinear Dynamics, 78, 839-856.
https://doi.org/10.1007/s11071-014-1481-3
[19]  刘向尧, 聂宏, 魏小辉. 多跨的三种梁的横向自由振动模型[J]. 振动与冲击, 2016, 35(8): 21-26.
[20]  袁兆鼎, 费景高, 刘德贵. 刚性常微分方程初值问题的数值解法[M]. 北京: 科学出版社, 2016.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133