全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用前馈神经网络解稳态对流扩散方程
Feedforward Neural Networks for Solving Steady-State Convection Diffusion Equation

DOI: 10.12677/AAM.2022.111005, PP. 28-32

Keywords: 前馈神经网络,偏微分方程
Feedforward Neural Networks
, Partial Differential Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要用前馈神经网络求解一维稳态对流扩散方程,因方程中含有一个小参数,所以用传统方法不容易达到理想效果,本文通过构造神经网络模拟方程并与其精确解作对比,选取ε={0.1,0.01}借助软件进行模拟,计算其误差,做出图像。
This paper mainly uses feedforward neural network to solve one-dimensional steady-state convection diffusion equation. The equation contains a small parameter, so the traditional method cannot achieve the ideal effect. This paper constructs the neural network simulation equation and then makes comparison with its accurate solution. This paper chooses parameter ε={0.1,0.01}, uses computer software to simulate, calculates its error, and makes an image.

References

[1]  Cybenko, G. (1989) Approximation by Superpositions of a Sigmoidal Function. Mathematics of Control, Signals and Systems, 2, 303-314.
https://doi.org/10.1007/BF02551274
[2]  Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2019) Physics Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. Journal of Computational Physics, 378, 686-707.
https://doi.org/10.1016/j.jcp.2018.10.045
[3]  Weinan, E. (2017) A Proposal on Machine Learning via Dynamical Systems. Communications in Mathematics and Statistics, 5, 1-11.
https://doi.org/10.1007/s40304-017-0103-z
[4]  毕超. 计算流体力学有限元方法及其编程详解[M]. 北京: 机械工业出版社, 2013.
[5]  Brezzi, F. and Russo, A. (1994) Choosing Bubbles for Advection-Diffusion Problems. Mathematical Models and Methods in Applied Sciences, 4, 571.
https://doi.org/10.1142/S0218202594000327

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133