|
基于网络药理学探讨复方龙丹颗粒治疗EMs的作用机制研究
|
Abstract:
目的:运用网络药理学的方法,探讨复方龙丹颗粒干预子宫内膜异位症(Endometriosis, EMs)的潜在作用机制,为其新药研发及基础研究提供依据。方法:通过TCMSP、ETCM、TCM-MESH等数据库检索复方龙丹颗粒中化合物成分信息,利用SwissADME平台及PharmMapper数据库筛选出其活性成分及作用靶点;采用GeneCards、DrugBank、OMIM、DisGeNet等数据库筛出与子宫内膜异位症的相关靶点,通过BisoGenet构建PPI网络,根据网络属性值筛选出关键靶点;同时分别采用ClueGO插件及Metascape平台对关键靶点进行KEGG、GO的富集分析,得到潜在的作用通路,并构建靶点–通路网络。结果:复方龙丹颗粒中筛选得到121个活性成分,经筛选与子宫内膜异位症相关的关键作用靶点156个,涉及白细胞介素17信号、类风湿关节炎等54条相关通路,参于细胞质翻译、mRNA结合等631个相关生物过程。结论:通过网络药理学揭示了复方龙丹颗粒可通过多成分、多靶标、多信号通路治疗子宫内膜异位症,为子宫内膜异位症的治疗及机制研究提供依据和思路。
Objective: To use the method of network pharmacology to explore the potential mechanism of the compound Long Dan granules intervention in endometriosis (Endometriosis, EMs), and to provide a basis for its new drug development and basic research. Methods: Search the compound information of compound Long Dan granules through TCMSP, ETCM, TCM-MESH and other databases, use SwissADME platform and PharmMapper database to screen out their active ingredients and targets; use GeneCards, DrugBank, OMIM, DisGeNet and other databases to screen out. For the targets related to endometriosis, the PPI network was constructed through BisoGenet, and the key targets were screened out according to the network attribute values; at the same time, the ClueGO plug-in and Metascape platform were used to perform KEGG and GO enrichment analysis on the key targets, and the results were obtained potential pathways of action, and built a target-pathway network. Results: 121 active ingredients were screened in the compound Long Dan granules, and 156 key targets related to endometriosis were screened, involving 54 related pathways such as interleukin 17 signaling and rheumatoid arthritis, 631 related biological processes such as cytoplasmic translation and mRNA binding. Conclusion: Through network pharmacology, it is revealed that the compound Long Dan granules can treat endometriosis through multi-component, multi-target, and multi-signal pathways, and provide basis and ideas for the treatment and mechanism research of endometriosis.
[1] | Zondervan, K.T., Becker, C.M., Koga, K., Missmer, S.A., Taylor, R.N. and Vigano, P. (2018) Endometriosis. Nature Reviews Disease Primers, 4, 9. https://doi.org/10.1038/s41572-018-0008-5 |
[2] | Bulun, S.E. (2009) Endometriosis. The New England Journal of Medicine, 360, 268-279.
https://doi.org/10.1056/NEJMra0804690 |
[3] | Coccia, M.E., et al. (2008) Endometriosis and Infertility: Surgery and ART: An Integrated Approach for Successful Management. European Journal of Obstetrics & Gynecology & Reproductive Biology, 138, 54-59.
https://doi.org/10.1016/j.ejogrb.2007.11.010 |
[4] | 唐秀胜. 医疗机构制剂复方龙丹颗粒的药效学试验和毒性试验研究[D]: [硕士学位论文]. 贵阳: 贵阳中医学院, 2017. |
[5] | Otasek, D., Morris, J.H., Bou?as, J., Pico, A.R. and Demchak, B. (2019) Cytoscape Automation: Empowering Workflow-Based Network Analysis. Genome Biology, 20, Article No. 185. https://doi.org/10.1186/s13059-019-1758-4 |
[6] | Zhou, Y., Zhou, B., Pache, L., et al. (2019) Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nature Communications, 10, Article No. 1523. https://doi.org/10.1038/s41467-019-09234-6 |
[7] | Jeong, H., Mason, S., Barabasi, A. and Oltvai, Z.N. (2001) Lethality and Centrality in Protein Networks. Nature, 411, 41-42. https://doi.org/10.1038/35075138 |
[8] | Holman, A.G., Davis, P.J., Foster, J.M., et al. (2009) Computational Prediction of Essential Genes in an Unculturable Endosymbiotic Bacterium, Wolbachia of Brugia malayi. BMC Microbiology, 9, Article No. 243.
https://doi.org/10.1186/1471-2180-9-243 |
[9] | Li, M., Wang, J., et al. (2011) A Local Average Connectivity-Based Method for Identifying Essential Proteins from the Network Level. Computational Biology & Chemistry, 35, 143-150.
https://doi.org/10.1016/j.compbiolchem.2011.04.002 |
[10] | Gabriela, B., Bernhard, M., Hubert, H., et al. (2009) ClueGO: A Cytoscape Plug-In to Decipher Functionally Grouped Gene Ontology and Pathway Annotation Networks. Bioinformatics, 25, 1091-1093.
https://doi.org/10.1093/bioinformatics/btp101 |
[11] | 杨颖, 王芸芸, 蒋琦辰. 槲皮素药理作用的研究进展[J]. 特种经济动植物, 2020, 23(5): 24-28. |
[12] | 马纳, 李亚静, 范吉平. 槲皮素药理作用研究进展[J]. 辽宁中医药大学学报, 2018, 20(8): 221-224. |
[13] | 张曦, 王鑫, 王红静, 杨琴, 郄明容. 槲皮素对子宫内膜异位症的抑制作用及机理探讨[J]. 四川大学学报(医学版), 2009, 40(2): 228-231+244. |
[14] | Cao, Y., Zhuang, M., Yang, Y., et al. (2014) Preliminary Study of Quercetin Affecting the Hypothalamic-Pituitary-Gonadal Axis on Rat Endometriosis Model. Evidence-Based Complementray and Alternative Medicine, 2014, Article ID: 781684. https://doi.org/10.1155/2014/781684 |
[15] | Sp, A., Wl, B., Fwb, C., et al. (2019) Quercetin Inhibits Proliferation of Endometriosis Regulating Cyclin D1 and Its Target microRNAs in Vitro and in Vivo. The Journal of Nutritional Biochemistry, 63, 87-100.
https://doi.org/10.1016/j.jnutbio.2018.09.024 |
[16] | Jamali, N., Zal, F., Mostafavi-Pour, Z., et al. (2020) Ameliorative Effects of Quercetin and Metformin and Their Combination against Experimental Endometriosis in Rats. Reproductive Sciences, 28, 1-10.
https://doi.org/10.1007/s43032-020-00377-2 |
[17] | Luo, H., Rankin, G., Li, Z., et al. (2011) Kaempferol Induces Apoptosis in Ovarian Cancer Cells through Activating p53 in the Intrinsic Pathway. Food Chemistry, 128, 513-519. https://doi.org/10.1016/j.foodchem.2011.03.073 |
[18] | 陈亚杰, 闻姬. 子宫内膜异位症中西医认识及治疗研究进展[J]. 陕西中医, 2021, 42(10): 1486-1489. |
[19] | Wei, L.L., Xiong, H.F., Li, W., et al. (2018) Upregulation of IL-6 Expression in Human Salivary Gland Cell Line by IL-17 via Activation of p38 MAPK, ERK, PI3K/Akt and NF-κB Pathways. Journal of Oral Pathology & Medicine, 47, 847-855. https://doi.org/10.1111/jop.12765 |
[20] | Miyake, S., Ogo, A., Kubota, H., et al. (2019) β-Hydroxy-β-methylbutyrate Suppresses NF-κB Activation and IL-6 Production in TE-1 Cancer Cells. In Vivo, 33, 353-358. https://doi.org/10.21873/invivo.11481 |
[21] | Chang, H.C., Lin, K.H., Tai, Y.T., et al. (2009) Lipoteichoic Acid Induced TNF-α and IL-6 Gene Expressions and Oxidative Stress Production in Macrophages Are Suppressed by Ketamine through Down-Regulating Toll-Like Receptor 2-Mediated Activation of ERK1/2 and NF-κB. Shock (Augusta Ga), 33, 485-492.
https://doi.org/10.1097/SHK.0b013e3181c3cea5 |