|
Applied Physics 2022
外延生长的菱方相Hf0.5Zr0.5O2薄膜的铁电性
|
Abstract:
本文采用脉冲激光沉积技术,在SrTiO3 (001)衬底上,以La0.7Sr0.3MnO3薄膜为缓冲层和底电极,成功制备了沿(111)取向外延生长的Hf0.5Zr0.5O2 (HZO)薄膜。X射线衍射的结果表明,外延HZO薄膜中菱方相的比例随薄膜生长温度升高而增加,随薄膜厚度的增加而减小。原子力显微镜的结果表明,外延HZO薄膜表面平整,均方根粗糙度为0.228 nm。压电力显微镜的结果证明外延HZO薄膜在室温下表现出良好的铁电性,同时确定了其室温压电系数d33约为4.8 pm/V。这些实验结果为基于HZO薄膜电子器件的设计提供了重要实验依据。
In this work, ferroelectric rhombohedral Hf0.5Zr0.5O2 (HZO) thin films with (111)-orientation were epitaxially grown on La0.7Sr0.3MnO3-buffered SrTiO3 (001) substrates by pulsed laser deposition. X-ray diffraction (XRD) scans show that the ratio of rhombohedral phase increases with the increase of thin film growth temperature, and decreases with the increase of thin film thickness. Atomic force microscopy (AFM) image shows that the HZO thin film is very smooth and its root mean square roughness is 0.228 nm. Piezoresponse Force Microscopy (PFM) measurements demonstrate that the HZO thin film shows superior ferroelectricity at room temperature. Meanwhile, the piezoelectric coefficient d33 of HZO thin film is estimated to be around 4.8 pm/V. Our work provides an important experimental result for designing nano-electronic devices based on HZO thin films.
[1] | Park, M.H., Lee, Y.H., Mikolajick, T., Schroeder, U. and Hwang, C.S. (2018) Review and Perspective on Ferroelectric HfO2-Based Thin Films for Memory Applications. MRS Communications, 8, 795-808.
https://doi.org/10.1557/mrc.2018.175 |
[2] | Troiler-McKinstry, S. (2020) Impact of Ferroelectricity. American Ceramic Society Bulletin, 99, 22-23. |
[3] | Yoong, H.Y., Wu, H., Zhao, J., Wang, H., Guo, R., Xiao, J., et al. (2018) Epitaxial Ferroelectric Hf0.5Zr0.5O2 Thin Films and Their Implementations in Memristors for Brain-Inspired Computing. Advanced Functional Materials, 28, Article ID: 1806037. https://doi.org/10.1002/adfm.201806037 |
[4] | Lowther, J.E., Dewhurst, J.K., Leger, J.M. and Haines, J. (1999) Relative Stability of ZrO2 and HfO2 Structural Phases. Physical Review B, 60, 83077-14488. https://doi.org/10.1103/PhysRevB.60.14485 |
[5] | Bscke, T.S., Miiller, J., Brauhaus, D., Schr?der, U. and B?ttger, U. (2011) Ferroelectricity in Hafnium Oxide Thin Films. American Institute of Physics, 99, Article ID: 102903. https://doi.org/10.1063/1.3634052 |
[6] | Robertson, J. (2006) High Dielectric Constant Gate Oxides for Metal Oxide Si Transistors. Reports on Progress in Physics, 69, 327-396. https://doi.org/10.1088/0034-4885/69/2/R02 |
[7] | Müller, J., B?scke, T.S., Müller, S., Yurchuk, E., Polakowski, P., Paul, J., et al. (2013) Ferroelectric Hafnium Oxide: A CMOS-Compatible and Highly Scalable Approach to Future Ferroelectric Memories. 2013 IEEE International Electron Devices Meeting, Washington DC, 9-11 December 2013, 10.8.1-10.8.4.
https://doi.org/10.1109/IEDM.2013.6724605 |
[8] | Kim, S.J., Mohan, J., Summerfelt, S.R. and Kim, J. (2019) Ferroelectric Hf0.5Zr0.5O2 Thin Films: A Review of Recent Advances. JOM, 71, 246-255. https://doi.org/10.1007/s11837-018-3140-5 |
[9] | Johnson, B. and Jones, J.L. (2019) Structures, Phase Equilibria, and Properties of HfO2. In: Schroeder, U., Hwang, C. and Funakubo, H., Eds., Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, Woodhead Publishing, Sawston, 25-45. https://doi.org/10.1016/B978-0-08-102430-0.00002-4 |
[10] | Min, H., Schenk, T, and Schroeder, U. (2019) Dopants in Atomic Layer Deposited HfO2 Thin Films. In: Schroeder, U., Hwang, C. and Funakubo, H., Eds., Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, Woodhead Publishing, Sawston, 49-74. https://doi.org/10.1016/B978-0-08-102430-0.00005-X |
[11] | Mu?Ller, J., Bo?Scke, T.S., Schro?Der, U., Mueller, S., Br?uhaus, D., B?ttger, U., et al. (2012) Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Letters, 12, 4318-4323. https://doi.org/10.1021/nl302049k |
[12] | Cheema, S.S., Kwon, D., Shanker, N., dos Reis, R., Hsu, S.-L., Xiao, J., et al. (2020) Enhanced Ferroelectricity in Ultrathin Films Grown Directly on Silicon. Nature, 580, 478-482. https://doi.org/10.1038/s41586-020-2208-x |
[13] | Mikolajick, T., Slesazeck, S., Park, M.H. and Schroeder, U. (2018) Ferroelectric Hafnium Oxide for Ferroelectric Random-Access Memories and Ferroelectric Field-Effect Transistors. MRS Bulletin, 43, 340-346.
https://doi.org/10.1557/mrs.2018.92 |
[14] | Batra, R., Huan, T.D., Jones, J.L., Rossetti Jr., G. and Ramprasad, R. (2017) Factors Favoring Ferroelectricity in Hafnia: A First-Principles Computational Study. Journal of Physical Chemistry C, 121, 4139-4145.
https://doi.org/10.1021/acs.jpcc.6b11972 |
[15] | Kisi, E.H. (2010) Influence of Hydrostatic Pressure on the t→o Transformation in Mg-PSZ Studied by in Situ Neutron Diffraction. Journal of the American Ceramic Society, 81, 741-745.
https://doi.org/10.1111/j.1151-2916.1998.tb02402.x |
[16] | Howard, C.J., Kisi, E.H., Roberts, R.B. and Hill, R.J. (1990) Neutron Diffraction Studies of Phase Transformations between Tetragonal and Orthorhombic Zirconia in Magnesia-Partially-Stabilized Zirconia. Journal of the American Ceramic Society, 73, 2828-2833. https://doi.org/10.1111/j.1151-2916.1990.tb06682.x |
[17] | Fina, I, and Sanchez, F. (2021) Epitaxial Ferroelectric HfO2 Films: Growth, Properties, and Devices. ACS Applied Electronic Materials, 3, 1530-1549. https://doi.org/10.1021/acsaelm.1c00110 |
[18] | Shimizu, T., Katayama, K., Kiguchi, T., Akama, A., Konno, T.J. and Funakubo, H. (2015) Growth of Epitaxial Orthorhombic yo1.5-Substituted HfO2 Thin Film. Applied Physics Letters, 23, Article ID: 102903.
https://doi.org/10.1063/1.4927450 |
[19] | Park, M.H., Kim, H.J., Kim, Y.J., Lee, W., Moon T. and Hwang, C.S. (2013) Evolution of Phases and Ferroelectric Properties of Thin Hf0.5Zr0.5O2 Films According to the Thickness and Annealing Temperature. Applied Physics Letters, 102, Article ID: 242905. https://doi.org/10.1063/1.4811483 |
[20] | Wei, Y., Nukala, P., Salverda, M., Matzen, S., Zhao, H.J., Momand, J., et al. (2018) A Rhombohedral Ferroelectric Phase in Epitaxially Strained Hf0.5Zr0.5O2 Thin Films. Nature Materials, 17, 1095-1100.
https://doi.org/10.1038/s41563-018-0196-0 |
[21] | Lyu, J., Fina, I., Solanas, R., Fontcuberta, J. and Sánchez, F. (2019) Growth Window of Ferroelectric Epitaxial Hf0.5Zr0.5O2 Thin Films. ACS Applied Electronic Materials, 1, 220-228. https://doi.org/10.1021/acsaelm.8b00065 |