|
高阶梁振动偏微分方程离散变分方法
|
Abstract:
针对高阶梁振动偏微分方程这类求解问题,研究了离散变分方法。首先运用微分求积法离散空间,在时间区间上构造离散变分方法,对离散后的欧拉–拉格朗日方程进行变分。仿真实验运用MATLAB进行数值计算。以无轴向运动简支梁在外部激励下的强迫振动方程为例研究了插值基函数的种类、时间步长、插值节点类型与仿真时间等对求解的影响。数值结果表明,短时间内离散变分法的约束和能量稳定性优于经典龙格–库塔法;长时间仿真下,离散变分法的结果精度高于龙格–库塔法,并且可以很好地保持约束的稳定性。
The discrete variational method is studied for the solution of high-order beam vibration partial differential equations. Firstly, the differential quadrature method is used to discretize the space, the discrete variational method is constructed on the time interval, and the Euler-Lagrange equation is variational. The simulation experiment uses MATLAB for numerical calculation. Taking the forced vibration equation of a simply supported beam without axial motion under external excitation as an example, the effects of the type of interpolation basis function, time step, interpolation node type and simulation time on the solution are studied. The numerical results show that the constraint and energy stability of the discrete variational method in a short time are better than those of the classical Runge-Kutta method; under long-time simulation, the accuracy of the discrete variational method is higher than that of Runge-Kutta method, and can maintain the stability of constraints.
[1] | 江海燕, 储德林. 轴向运动梁横向振动固有频率微分求积法研究[J]. 安徽广播电视大学学报, 2011(3): 126-128. |
[2] | 马国亮, 陈立群. 轴向运动梁的横向随机响应[J]. 振动与冲击, 2014, 33(9): 78-82. |
[3] | 周凤英, 谢宇. 梁振动方程数值解的移位Legendre小波配置法[J]. 东华理工大学学报: 自然科学版, 2019, 42(2): 195-200. |
[4] | 杜绍洪. 梁自由横振动方程的有限差分方法[J]. 重庆交通大学学报(自然科学版), 2012, 31(1): 6-10. |
[5] | 汪芳宗, 廖小兵, 谢雄. 微分求积法的特性及其改进[J]. 计算力学学报, 2015, 32(6): 765-771. |
[6] | Bert, C.W. and Malik, M. (1996) Differential Quadrature Method in Computational Mechanics: A Review. Applied Mechanics Reviews, 49, 1-28. |
[7] | Wang, R., Wang, Q., Guan, X., et al. (2021) Coupled Free Vibration Analysis of Functionally Graded Shaft-Disk System by Differential Quadrature Finite Element Method. The European Physical Journal Plus, 136, 1-27. |
[8] | 王波, 陈立群. 微分求积法处理轴向变速黏弹性梁混杂边界条件[J]. 振动与冲击, 2012, 31(5): 87-91. |
[9] | 唐媛. 含尺度效应的双曲剪切变形理论梁的结构力学分析[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2019. |
[10] | 张冰冰, 王刚, 丁洁玉. 基于Hermite插值的多体系统动力学离散变分方法[J]. 动力学与控制学报, 2018, 16(2): 6. |
[11] | 于文洁. 多体系统动力学Galerkin变分数值积分方法研究[D]: [博士学位论文]. 青岛: 青岛科技大学, 2015. |
[12] | 崔灿, 李映辉. 变截面铁木辛柯梁振动特性快速计算方法[J]. 动力学与控制学报, 2012, 10(3): 258-262. |
[13] | 栾艳萍, 席丰. 几种边界约束条件下受火钢梁行为的比较分析[J].山东建筑大学学报, 2012, 27(5): 477-482. |
[14] | Bellman, R., Kashef, B.G. and Casti, J. (1972) Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equations. Journal of Computational Physics, 10, 40-52.
https://doi.org/10.1016/0021-9991(72)90089-7 |
[15] | Zhang, W., Wang, D.M. and Yao, M.H. (2014) Using Fourier Differential Quadrature Method to Analyze Transverse Nonlinear Vibrations of an Axially Accelerating Viscoelastic Beam. Nonlinear Dynamics, 78, 839-856.
https://doi.org/10.1007/s11071-014-1481-3 |
[16] | 鲍文娣, 韩海力. 求解指标1的微分代数方程组的一类新方法[J]. 淮阴师范学院学报(自然科学版), 2012, 11(2): 117-121+145. |