全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多进程的焦点堆栈图像融合方法
Method of Focus Stacks’ Fusion Based on Multi-Processing

DOI: 10.12677/JISP.2022.111001, PP. 1-8

Keywords: 焦点堆栈,多进程,图像合成,多核CPU
Focus Stack
, Multiprocessing, Image Fusion, Multi-Core CPU

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统上为了拍摄前景与后景均清晰的图像,相机光圈应当尽可能的小。但是受到衍射极限的影响,过小的光圈会造成图像发生畸变。然而通过将多张相同构图但不同焦距的图像合成,可克服上述困难。本方法包含硬件设备和算法设计,重点在算法设计上,包括高斯滤波、拉普拉斯算子、均值滤波以及探测点的极大值映射,最终实现图像的合成。除此而外,算法中还加入了多进程的思想,使得算法在获取同样锐度图像的条件下,程序运行时间极大缩短,这通过仿真实验得以论证。本论文提出的算法适用于多核CPU的处理,具备普适性。
Traditionally, the camera’s aperture should be as small as possible in order to make the foreground and the background clear, respectively. However, affected by the diffraction limit, tiny apertures can cause the image distortion. The above difficulties can be overcome by merging multiple images with the same compositions but with different focus. The thesis includes hardware and algorithm design, emphasizing on algorithm design. The image can be eventually fused including in Gaussian filtering, Laplacian operator, mean filtering and maximum mapping of detection points. Besides, in order to greatly shorten the running time of program, the multi-process is added to the algorithm without deprived of any sharpness, demonstrated by simulation. The algorithm is suitable for the multi-core CPU, universally.

References

[1]  玻恩, 沃尔夫. 光学原理[M]. 沈常宇, 金尚忠, 译. 北京: 电子工业出版社, 2006.
[2]  Jacobs, D.E., Baek, J. and Levoy, M. (2012) Focal Stack Compositing for Depth of Field Control. Stanford Computer Graphics Laboratory Technical Report, 2012-1.
[3]  Kutulakos, K. and Hasinoff, S.W. (2009) Focal Stack Photography: High-Performance Photography with a Conventional Camera. The Eleventh IAPR Conference on Machine Vision Applications, Yokohama, 20-22 May 2009, 332-337.
[4]  Levoy, M., Ng, R., Adams, A., et al. (2006) Light Field Microscopy. SIGGRAPH06: Special Interest Group on Computer Graphics and Interactive Techniques Conference, Boston, 30 July 2006-3 August 2006, 924-934.
https://doi.org/10.1145/1179352.1141976
[5]  Hasinoff, S.W. and Kutulakos, K.N. (2009) Confocal Stereo. International Journal of Computer Vision, 81, 82-104.
https://doi.org/10.1007/s11263-008-0164-2
[6]  Zitnick, C.L., Kang, S.B., Uyttendaele, M., et al. (2004) High-Quality Video View Interpolation Using a Layered Representation. ACM Transactions on Graphics (TOG), 23, 600-608.
https://doi.org/10.1145/1015706.1015766
[7]  Fitzgibbon, A., Wexler, Y. and Zisserman, A. (2005) Image-Based Rendering Using Image-Based Priors. International Journal of Computer Vision, 63, 141-151.
https://doi.org/10.1007/s11263-005-6643-9
[8]  Hertzmann, A. and Seitz, S.M. (2005) Example-Based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1254-1264.
https://doi.org/10.1109/TPAMI.2005.158
[9]  Gonzales, R.C. and Woods, R.E. (2002) Digital Image Processing. Prentice-Hall Inc., Upper Saddle River.
[10]  Amdahl, G.M. (1967) Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. Proceedings of the AFIPS ‘67 Spring Joint Computer Conference, Atlantic City, 18-20 April 1967, 483-485.
https://doi.org/10.1145/1465482.1465560
[11]  Seshadri, G., Jain, R. and Mittal, A. (2010) Parallelization of Principal Component Analysis (Using Eigen Value Decomposition) on Scalable Multi-Core Architecture. 2010 IEEE 2nd International Advance Computing Conference (IACC), Patiala, 19-20 February 2010, 44-49.
https://doi.org/10.1109/IADCC.2010.5423039
[12]  Benzi, J. and Damodaran, M. (2009) Parallel Three Dimensional Direct Simulation Monte Carlo for Simulating Micro Flows. In: Parallel Computational Fluid Dynamics 2007, Springer, Berlin, 91-98.
https://doi.org/10.1007/978-3-540-92744-0_11

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133