全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

机载激光雷达(LiDAR)在冻土探测中的应用研究进展
Research Progress of the Application of LiDAR in Frozen Soil

DOI: 10.12677/AG.2022.121004, PP. 24-33

Keywords: 机载LiDAR,工作原理,冻土,积雪
LiDAR
, Working Principle, Frozen Soil, Snow

Full-Text   Cite this paper   Add to My Lib

Abstract:

激光雷达(LiDAR)作为一种主动对地观测的现代光学遥感技术,通过激光雷达传感器发射的激光脉冲经地面反射后被系统接收,机载激光雷达系统仅需要少量的地面控制点,即可以获取高精度、高密度的三维坐标数据,并构建目标物的三维立体模型,是有源遥感技术在空间信息获取及自动化快速处理方面的重要发展。机载激光雷达具有自动化程度高,受地形地貌、天气影响小,数据生产周期短等特点,为获取高分辨率的地球空间信息,可提供一种全新的技术手段。本文对机载激光雷达技术(LiDAR)系统组成和具体工作原理进行简单介绍,对机载激光雷达在冻土区域研究应用作了重点描述,分析了目前应用存在的问题,并对未来发展趋势提出预测和展望。
LiDAR is a modern optical remote sensing technology for active earth observation. The laser pulse emitted by the lidar sensor is reflected by the ground and then received by the system. The airborne laser mine system requires only a small number of ground control points. That is, it is possible to obtain high-precision, high-density three-dimensional coordinate data and construct a three- dimensional model of the target. This is an important development of active remote sensing technology in the acquisition of spatial information and automatic and rapid processing. Airborne lidar has the characteristics of high degree of automation, little influence by topography, landforms, weather, and short data production cycle. It can provide a brand-new technical means for obtaining high-resolution geospatial information. This article briefly introduces the composition and specific working principles of the airborne laser radar technology (LIDAR) system, focuses on the research and application of airborne laser mines in frozen soil areas, analyzes the existing problems in the current application, and puts forward forecasts for prospects and trends to the future development.

References

[1]  Baltsavias, E.P. (1999) A Comparison between Photogrammetry and Laser Scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 83-94.
https://doi.org/10.1016/S0924-2716(99)00014-3
[2]  Baltsavias, E.P. (1999) Airborne Laser Scanning: Basic Relations and Formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 199-214.
https://doi.org/10.1016/S0924-2716(99)00015-5
[3]  Baltsavias, E.P. (1999) Airborne Laser Scanning: Existing Systems and Firms and Other Resources. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 164-198.
https://doi.org/10.1016/S0924-2716(99)00016-7
[4]  Zielke, O., Klinger, Y. and Arrowsmith, J.R. (2015) Fault Slip and Earthquake Recurrence along Strike-Slip Faults— Contributions of High-Resolution Geomorphic Data. Tectonophysics, 638, 43-62.
https://doi.org/10.1016/j.tecto.2014.11.004
[5]  李清泉, 李必军, 陈静. 激光雷达测量技术及其应用研究[J]. 武汉测绘科技大学学报, 2000, 25(5): 387-393.
[6]  张玉方, 程新文, 欧阳平, 王冬梅, 熊娜. 机载LIDAR数据处理及其应用综述[J]. 工程地球物理学报, 2008, 5(1): 119-124.
[7]  黄先锋, 李卉, 王潇, 张帆. 机载LiDAR数据滤波方法评述[J]. 测绘学报, 2009, 8(5): 466-469.
[8]  赵一鸣, 李艳华, 商雅楠, 李静, 于勇, 李凉海. 激光雷达的应用及发展趋势[J]. 遥测遥控, 2014, 35(5): 4-22.
[9]  Ackermann, F. (1999) Airborne Laser Scanning-Present Status and Future Expectation. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 64-67.
https://doi.org/10.1016/S0924-2716(99)00009-X
[10]  Flood, M. (2001) Laser Altimetry: From Science to Commercial LIDAR Mapping. Photogrammetric Engineering & Remote Sensing, 67, 1209-1217.
[11]  赖旭东, 李咏旭, 陈佩奇, 杨婧如, 祝勇. 机载激光雷达技术现状及展望[J]. 地理空间信息, 2017, 15(8): 1-4.
[12]  赖旭东, 刘雨杉, 李咏旭, 祝勇. 机载激光雷达点云密度特征应用现状及进展[J]. 地理空间信息, 2018, 16(12): 1-5.
[13]  郑若琳, 洪亮. 地理空间信息机载激光雷达的优势与发展[J]. 地理空间信息, 2018, 16(2): 37-39.
[14]  Ren, Z.K., Zielke, O. and Yu, J.X. (2018) Active Tectonics in 4D High-Resolution. Journal of Structural Geology, 117, 264-271.
https://doi.org/10.1016/j.jsg.2018.09.015
[15]  Niedzielski, T. (2018) Applications of Unmanned Aerial Vehicles in Geosciences: Introduction. Pure and Applied Geophysics, 175, 3141-3144.
https://doi.org/10.1007/s00024-018-1992-9
[16]  Bockheim, J.G. and Hall, K.J. (2002) Permafrost, Active-Layer Dynamics and Periglacial Environments of Continental Antarctica: Periglacial and Permafrost Research in the Southern Hemisphere. South African Journal of Science, 98, 82-90.
[17]  Zhang, T., Barry, R.G., Knowles, K. and Heginbottom, J.A. (2008) Statistics and Characteristics of Permafrost and Ground- Ice Distribution in the Northern Hemisphere. Polar Geography, 31, 47-68.
https://doi.org/10.1080/10889370802175895
[18]  Gruber, S. (2012) Derivation and Analysis of a High-Resolution Estimate of Global Permafrost Zonation. The Cryosphere, 6, 221-233.
https://doi.org/10.5194/tc-6-221-2012
[19]  Li, X., Cheng, G.D., Jin, H.J., et al. (2008) Cryospheric Change in China. Global and Planetary Change, 62, 210-218.
https://doi.org/10.1016/j.gloplacha.2008.02.001
[20]  Ran, Y.H., Li, X., Cheng, G.D., et al. (2012) Distribution of Permafrost in China: An Overview of Existing Permafrost Maps. Permafrost and Periglacial Processes, 23, 322-333.
https://doi.org/10.1002/ppp.1756
[21]  冉有华, 李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[22]  郭利娜. 冻土理论研究进展[J]. 水利水电技术, 2019, 50(3): 145-154.
[23]  Koren, V., Schaake, J., Mitchell, K., Duan, Q.Y., Chen, F. and Baker, J.M. (1999) A Parameterization of Snowpack and Frozen Ground Intended for NCEP Weather and Climate Models. Journal of Geophysical Research: Atmospheres, 104, 19569-19585.
https://doi.org/10.1029/1999JD900232
[24]  Yin, G.A., Niu, F.J., Lin, Z.J., Luo, J. and Liu, M.H. (2017) Effects of Local Factors and Climate on Permafrost Conditions and Distribution in Beiluhe Basin, Qinghai-Tibet Plateau, China. Science of the Total Environment, 581-582, 472- 485.
https://doi.org/10.1016/j.scitotenv.2016.12.155
[25]  Zhao, L., Ping, C.L., Yang, D., Cheng, G., Ding, Y. and Liu, S. (2004) Changes of Climate and Seasonally Frozen Ground over the Past 30 Years in Qinghai-Xizang (Tibetan) Plateau, China. Global and Planetary Change, 43, 19-31.
https://doi.org/10.1016/j.gloplacha.2004.02.003
[26]  Bhardwaj, A., Sam, L., Bhardwaj, A. and Martín-Torres, F. J. (2016) LiDAR Remote Sensing of the Cryosphere: Present Applications and Future Prospects. Remote Sensing of Environment, 177, 125-143.
https://doi.org/10.1016/j.rse.2016.02.031
[27]  王通, 俞祁浩, 游艳辉. 物探技术在多年冻土探测方面的应用[J]. 物探与化探, 2011, 35(5): 639-642.
[28]  王武, 赵林, 刘广岳, 俞祁浩, 盛煜. 瞬变电磁法(TEM)在多年冻土区的应用研究[J]. 冰川冻土, 2011, 33(1): 156-163.
[29]  龙作元, 何胜. 核磁共振测深方法在多年冻土区找水中的应用[J]. 物探与化探, 2015(2): 288-291.
[30]  彭劲松, 许俊, 李娟, 周光明. 机载激光测量系统在地质灾害中的应用[J]. 测绘通报, 2018(9): 160-162.
[31]  Mallet, C. and Bretar, F. (2009) Full-Waveform Topographic LiDAR: State-of-the-Art. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 1-16.
https://doi.org/10.1016/j.isprsjprs.2008.09.007
[32]  王宗跃, 马洪超, 彭检贵. 利用LIDAR数据提取山谷(脊)线的关键技术研究[J]. 山东科技大学学报(自然科学版), 2010, 29(6): 19-24.
[33]  陈富强. 机载LIDAR技术的优势及应用前景研究[J]. 北京测绘, 2013(2): 12-14.
[34]  卢小平, 庞星晨, 武永斌, 李珵, 李国清, 于海洋. 机载 LiDAR基础测绘关键技术及应用[J]. 测绘通报, 2014(9): 26-30.
[35]  陈松尧, 程新文. 机载LIDAR系统原理及应用综述[J]. 测绘工程, 2007, 16(1): 27-31.
[36]  隋立春, 张宝印. LiDAR遥感基本原理及其发展[J]. 测绘科学技术学报, 2006, 23(2): 127-129.
[37]  隋立春, 宋会传, 马远新, 李建武. 航空激光雷达数据处理原理及其应用前景[J]. 测绘科学技术学报, 2007, 24(3): 157-159.
[38]  靳克强, 龚志辉, 汤志强, 张斌, 王庆伍. 机载LiDAR技术原理及其几点应用分析[J]. 测绘与空间地理信息, 2011, 34(1): 144-146+150.
[39]  靳克强, 龚志辉, 汤志强, 张斌, 袁辉. 机载激光雷达点云数据质量评价体系分析与探讨[J]. 测绘与空间地理信息, 2012, 35(4): 197-200.
[40]  Deems, J.S., Painter, T.H. and Finnegan, D.C. (2013) LiDAR Measurement of Snow Depth: A Review. Journal of Glaciology, 59, 467-479.
[41]  Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.H., Loye, A., Metzger, R. and Pedrazzini, A. (2012) Use of LIDAR in Landslide Investigations: A Review. Natural Hazards, 61, 5-28.
https://doi.org/10.1007/s11069-010-9634-2
[42]  Lim, K., Treitz, P., Wulder, M., St-Onge, B. and Flood, M. (2003) LiDAR Remote Sensing of Forest Structure. Progress in Physical Geography, 27, 88-106.
https://doi.org/10.1191/0309133303pp360ra
[43]  Bradbury, R.B., Hill, R.A., Mason, D.C., Hinsley, S.A., Wilson, J.D., Balzter, H. and Bellamy, P.E. (2005) Modelling Relationships between Birds and Vegetation Structure Using Airborne LiDAR Data: A Review with Case Studies from Agricultural and Woodland Environments. IBIS International Journal of Avian Science, 147, 443-452.
https://doi.org/10.1111/j.1474-919x.2005.00438.x
[44]  Wulder, M.A., White, J.C., Nelson, R.F., Nsset, E., Rka, H.O., Coops, N.C. and Gobakken, T. (2012) Lidar Sampling for Large-Area Forest Characterization: A Review. Remote Sensing of Environment, 121, 196-209.
https://doi.org/10.1016/j.rse.2012.02.001
[45]  梁晓军, 庞勇, 陈博伟. 基于地基激光雷达胸径提取的单木位置精确测量[J]. 林业科学研究, 2020, 33(4): 67-74.
[46]  佘金星, 程多祥, 刘飞, 陈思思, 杨武年. 机载激光雷达技术在地质灾害调查中的应用——以四川九寨沟7.0级地震为例[J]. 中国地震, 2018, 34(3): 435-444.
[47]  许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7): 957-966.
[48]  董秀军, 许强, 佘金星, 李为乐, 刘飞, 周兴霞. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版), 2020, 45(3): 432-441.
[49]  Meigs, A. (2013) Active Tectonics and the LiDAR Revolution. Lithosphere, 5, 226-229.
https://doi.org/10.1130/RF.L004.1
[50]  Glennie, C.L., Hinojosa-Corona, A., Nissen, E., Kusari, A., Oskin, M.E., Arrowsmith, J.R. and Borsa, A. (2014) Optimization of Legacy Lidar Data Sets for Measuring Near-Field Earthquake Dis-placements. Geophysical Research Letters, 41, 3494-3501.
https://doi.org/10.1002/2014GL059919
[51]  Wu, Q.B., Liu, Y.Z., Zhang J.M. and Tong C.J. (2002) A Review of Recent Frozen Soil Engineering in Permafrost Regions along Qinghai-Tibet Highway, China. Permafrost & Periglacial Processes, 13, 199-205.
https://doi.org/10.1002/ppp.420
[52]  刘广岳, 谢昌卫, 杨淑华. 青藏公路沿线多年冻土区活动层起始冻融时间的时空变化特征和影响因素[J]. 冰川冻土, 2018, 40(6): 1067-1078.
[53]  Chasmer, L., Hopkinson, C., Veness, T., Quinton, W. and Baltzer, J. (2014) A Decision-Tree Classification for Low- Lying Complex Land Cover Types within the Zone of Discontinuous Permafrost. Remote Sensing of Environment, 143, 73-84.
https://doi.org/10.1016/j.rse.2013.12.016
[54]  冯雨晴, 梁四海, 吴青柏, 陈建伟, 田鑫, 吴盼. 冻土退化过程中植被覆盖度的变化研究[J]. 北京师范大学学报(自然科学版), 2016, 52(3): 311-316.
[55]  Deline, P., Jaillet, S., Rabatel, A. and Ravanel, L. (2008) Ground-Based LiDAR Data on Permafrost-Related Rock Fall Activity in the Mont-Blanc Massif. Proceedings of the 9th International Conference on Permafrost, Alaska, 29 June-3 July 2008, 349-354.
[56]  Avian, M., Kellerer-Pirklbauer, A. and Bauer, A. (2009) LiDAR for Monitoring Mass Movements in Permafrost Environments at the Cirque Hinteres Langtal, Austria, between 2000 and 2008. Natural Hazards and Earth System Sciences, 9, 1087-1094.
https://doi.org/10.5194/nhess-9-1087-2009
[57]  Chasmer, L., Hopkinson, C., Morrison, H., Petrone, R. and Quinton, W. (2011) Fusion of airborne LiDAR and World- View-2 MS Data for Classification of Depth to Permafrost within Canada’s Sub-Arctic. Proceedings of SilviLaser, Hobart, 16-20 October 2011, 16-20.
[58]  Chasmer, L., Hopkinson, C. and Quinton, W. (2010) Quantifying Errors in Discontinuous Permafrost Plateau Change from Optical Data, Northwest Territories, Canada: 1947-2008. Canadian Journal of Remote Sensing, 36, S211-S223.
https://doi.org/10.5589/m10-058
[59]  Chasmer, L., Quinton, W., Hopkinson, C., Petrone, R. and Whittington, P. (2011) Vegetation Canopy and Radiation Controls on Permafrost Plateau Evolution within the Discontinuous Permafrost Zone, Northwest Territories. Permafrost and Periglacial Process, 22, 199-213.
https://doi.org/10.1002/ppp.724
[60]  Stevens, C.W. and Wolfe, S.A. (2012) High-Resolution Mapping of Wet Terrain within Discontinuous Permafrost Using LiDAR Intensity. Permafrost and Periglacial Processes, 23, 334-341.
https://doi.org/10.1002/ppp.1752
[61]  Hubbard, S.S., Gangodagamage, C., Dafflon, B., Wainwright, H., Peterson, J., Gusmeroli, A. and Wullschleger, S.D. (2013) Quantifying and Relating Landsurface and Subsurface Variability in Permafrost Environments Using LiDAR and Surface Geophysical Datasets. Hydrogeology Journal, 21, 149-169.
https://doi.org/10.1007/s10040-012-0939-y
[62]  Paine, J.G., Andrews, J.R., Saylam, K., Tremblay, T.A., Averett, A.R., Caudle, T.L. and Young, M.H. (2013) Airborne Lidar on the Alaskan North Slope: Wetlands Mapping, Lake Volumes, and Permafrost Features. The Leading Edge, 32, 798-805.
[63]  Gangodagamage, C., Rowland, J.C., Hubbard, S.S., Brumby, S.P., Liljedahl, A.K., Wainwright, H. and Dafflon, B. (2014) Extrapolating Active Layer Thickness Measurements across Arctic Polygonal Terrain Using LiDAR and NDVI Data Sets. Water Resources Research, 50, 6339-6357.
https://doi.org/10.1002/2013WR014283
[64]  Hopkinson, C., Demuth, M., Sitar, M. and Chasmer, L. (2001) Applications of Airborne LiDAR Mapping in Glacierised Mountainous Terrain. IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, 9-13 July 2001, 949-951.
https://doi.org/10.1109/IGARSS.2001.976690
[65]  Hopkinson, C., Sitar, M., Chasmer, L. and Treltz, P. (2004) Mapping Snowpack Depth beneath Forest Canopies Using Airborne Lidar. Photogrammetric Engineering and Remote Sensing, 70, 323-330.
https://doi.org/10.14358/PERS.70.3.323
[66]  Deems, J.S. and Painter, T.H. (2006) Lidar Measurement of Snow Depth: Accuracy and Error Sources. In: Gleason, J.A., Ed., Proceedings of the International Snow Science Workshop, International SnowScience Workshop, Telluride, 30-38.
[67]  Helfricht, K., Kuhn, M., Keuschnig, M. and Heilig, A. (2014) Lidar Snow Cover Studies on Glaciers in the ?tztal Alps (Austria): Comparison with Snow Depths Calculated from GPR Measurements. The Cryosphere, 8, 41-57.
https://doi.org/10.5194/tc-8-41-2014
[68]  Helfricht, K., Sch?ber, J., Schneider, K., Sailer, R. and Kuhn, M. (2014) Interannual Persistence of the Seasonal Snow Cover in a Glacierized Catchment. Journal of Glaciology, 60, 889-904.
[69]  Kirchner, P.B., Bales, R.C., Molotch, N.P., Flanagan, J. and Guo, Q. (2014) LiDAR Measurement of Seasonal Snow Accumulation along an Elevation Gradient in the Southern Sierra Nevada, California. Hydrology and Earth System Sciences, 18, 4261-4275.
https://doi.org/10.5194/hess-18-4261-2014
[70]  DeBeer, C.M. and Pomeroy, J.W. (2010) Simulation of the Snowmelt Runoff Contributing Area in a Small Alpine Basin. Hydrology and Earth System Sciences, 14, 1205-1219.
https://doi.org/10.5194/hess-14-1205-2010
[71]  Varhola, A., Coops, N.C., Bater, C.W., Teti, P., Boon, S. and Weiler, M. (2010) The Influence of Ground- and Lidar- Derived Forest Structure Metrics on Snow Accumulation and Ablation in Disturbed Forests. Canadian Journal of Forest Research, 40, 812-821.
https://doi.org/10.1139/X10-008
[72]  孙中震. 基于机载LiDAR的青藏高原冰川雪线提取研究[D]: [硕士学位论文]. 重庆: 重庆交通大学, 2019.
[73]  仲文. 祁连山黑河上游多年冻土区热融喀斯特地表变形监测研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133