全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

温度和湿度影响下的真菌竞争作用研究
Study on the Competition between Fungi under the Influence of Temperature and Humidity

DOI: 10.12677/AAM.2022.111011, PP. 71-77

Keywords: 种间竞争,Logistic模型,微分方程,环境因素,抑制作用
Interspecific Competition
, Logistic Model, Differential Equation, Environmental Factors, Inhibition

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究真菌间的竞争作用,首先在真菌种群Logistic模型的基础上,添加温度、湿度等环境因素的影响及其他真菌种群的抑制作用,针对真菌的数量增长速率建立微分方程模型。其次,将两种真菌的数据利用SPSS数学软件进行回归分析,得出真菌在独立生长时两种真菌的生长速率表达式。将两个表达式代入模型后求解,即可得出这两种真菌在相同环境的竞争下真菌数量变化的表达式。对此模型进行适当应用,可以在工业、农业等方面合理推测多种真菌共同作用时各真菌的生长情况。最后,本文选择两种分布较为广泛的真菌,研究其数量随时间的变化规律,得到真菌之间相互作用的长短期动态描述。
When studying the competition among fungi, this paper firstly established a differential equation model for the growth rate of fungi by adding the influence of environmental factors such as temperature and humidity and the inhibition of other fungi populations on the basis of the Logistic model of fungi population. Secondly, the data of the two kinds of fungi were analyzed by using SPSS mathematical software for regression analysis, and the expressions of the growth rates of the two kinds of fungi were obtained when the fungi were growing independently. By substituting the two expressions into the model and solving them, we can get the expression of the change of the number of fungi when the two fungi compete in the same environment. The model can be used in industry and agriculture to predict the growth of various fungi. Finally, this paper selects two kinds of fungi which are widely distributed, and studies the change rule of their quantity with time, so as to obtain the long-term and short-term dynamic description of the interaction between fungi.

References

[1]  Lustenhouwer, N., Maynard, D.S., Bradford, M.A., Lindner, D.L., Oberle, B., Zanne, A.E. and Crowther, T.W. (2020) A Trait-Based Understanding of Wood Decomposition by Fungi. Proceedings of the National Academy of Sciences of the United States of America, 117, 11551-11558.
https://doi.org/10.1073/pnas.1909166117
[2]  涂庆. 中小样本的拟合优度检验[D]: [硕士学位论文]. 武汉: 华中师范大学, 2007.
[3]  Li, Y.C., Li, Y.F., Chang, S.X., Yang, Y.F., Fu, S.L., Jiang, P.K., Luo, Y., Yang, M., Chen, Z.H., Hu, S.D., Zhao, M.X., Liang, X., Xu, Q.F., Zhou, G.M. and Zhou, J.Z. (2018) Biochar Reduces Soil Heterotrophic Respiration in a Subtropical Plantation through Increasing Soil Organic Carbon Recalcitrancy and Decreasing Carbon-Degrading Microbial Activity. Soil Biology and Biochemistry, 122, 173-185.
https://doi.org/10.1016/j.soilbio.2018.04.019
[4]  姚世庭, 芦光新, 邓晔, 党宁, 王英成, 张海娟, 颜珲璘. 模拟增温对土壤真菌群落组成及多样性的影响[J]. 生态环境学报, 2021, 30(7): 1404-1411.
[5]  Siciliano, S.D., Palmer, A.S., Winsley, T., Lamb, E., Bissett, A., Brown, M.V., van Dorst, J., Ji, M., Ferrari, B.C., Grogan, P., Chu, H.Y. and Snape, I. (2014) Soil Fertility Is Associated with Fungal and Bacterial Richness, Whereas pH Is Associated with Community Composition in Polar Soil Microbial Communities. Soil Biology and Biochemistry, 78, 10-20.
https://doi.org/10.1016/j.soilbio.2014.07.005
[6]  庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790.
[7]  侯萌, 陈一民, 焦晓光, 孙波, 隋跃宇. 两种气候条件下不同有机质含量农田黑土真菌群落结构特征[J]. 微生物学通报, 2020, 47(9): 2822-2832.
[8]  张卫建, 许泉, 王绪奎, 卞新民. 气温上升对草地土壤微生物群落结构的影响(英文) [J]. 生态学报, 2004, 24(8): 1746-1751.
[9]  肖辉林, 郑习健. 土壤变暖对土壤微生物活性的影响(英文) [J]. 土壤与环境, 2001, 10(2): 138-142.
[10]  Looby, C.I., MAltz, M.R. and Tressder, K.K. (2016) Belowground Responses to Elevation in a Changing Cloud Forest. Ecology and Evolution, 6, 1996-2009.
https://doi.org/10.1002/ece3.2025
[11]  孔滨, 孙波, 郑宪清, 陈小云, 隋跃宇, 王帘里. 水热条件和施肥对黑土中微生物群落代谢特征的影响[J]. 土壤学报, 2009, 46(1): 100-106.
[12]  Ayerst, G. (1969) The Effects of Moisture and Temperature on Growth and Spore Germination in Some Fungi. Journal of Stored Products Research, 5, 127-141.
https://doi.org/10.1016/0022-474X(69)90055-1
[13]  Maynard, D.S., Bradford, M.A., Covey, K.R., Lindner, D., Glaeser, J., Talbert, D.A., Tinker, P.J., Walker, D.M. and Crowther, T.W. (2019) Consistent Trade-Offs in Fungal Trait Expression across Broad Spatial Scales. Nature Microbiology, 4, 846-853.
https://doi.org/10.1038/s41564-019-0361-5
[14]  Genre, A., Lanfranco, L., Perotto, S. and Bonfante, P. (2020) Unique and Common Traits in Mycorrhizal Symbioses. Nature Reviews Microbiology, 18, 649-660.
https://doi.org/10.1038/s41579-020-0402-3
[15]  Sun, T., Hobbie, S.E., Berg, B., Zhang, H.G., Wang, Q.K., Wang, Z.W. and H?ttenschwiler, S. (2018) Contrasting Dynamics and Trait Controls in First-Order Root Compared with Leaf Litter Decomposition. Proceedings of the National Academy of Sciences, 115, 10392-10397.
https://doi.org/10.1073/pnas.1716595115
[16]  Bonner, J.T. (2020) A Study of the Temperature and Humidity Requirements of Aspergillus niger. Mycologia, 40, 728-738.
https://doi.org/10.1080/00275514.1948.12017741

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133