|
铜绿假单胞菌异质性耐药及新型抗菌活性物质的研究进展
|
Abstract:
铜绿假单胞菌(Pseudomonas aeruginosa, PA)在自然界中分布广泛,是重症监护室最常见的细菌,又是院内感染最主要的死因。而异质性耐药是指细菌内部存在一个或多个亚群比其余种群具有更高的耐药性。异质性耐药可能会引起治疗的失败,给患者带来不必要的痛苦和经济损失。本文就铜绿假单胞菌的耐药现状、检测方法、临床异质性耐药的检出情况、耐药机制和新研发活性物质的进展作如下综述。
Pseudomonas aeruginosa (PA) is the most common bacteria in intensive care units and the main cause of death in hospital infections, which widely distributed in nature. Heteroresistance means that different subgroups of bacteria show different sensitivities to a certain antibacterial. Since heteroresistance often causes treatment failure, it brings unnecessary pain and economic loss to patients. In this paper, the research status, detection methods, heterogeneity resistance of existing drugs, resistance mechanism and the progress of newly developed drugs of PA are summarized as follows.
[1] | 佚名. 2019年全国细菌耐药监测报告[R]. 北京: 国家卫生健康委合理用药专家委员会, 2020. |
[2] | 胡付品, 郭燕, 朱德妹, 汪复, 蒋晓飞, 徐英春, 等. 2016年中国CHINET细菌耐药性监测[J]. 中国感染与化疗杂志, 2017, 17(5): 481-491. |
[3] | El-Halfawy, O.M. and Valvano, M.A. (2015) Antimicrobial Heteroresistance: An Emerging Field in Need of Clarity. Clinical Microbiology Reviews, 28, 191-207. https://doi.org/10.1128/CMR.00058-14 |
[4] | Alam, M.R., Donabedian, S., Brown, W., Gordon, J., Chow, J.W., Zervos, M.J., et al. (2001) Heteroresistance to Vancomycin in Enterococcus faecium. Journal of Clinical Microbiology, 39, 3379-3381.
https://doi.org/10.1128/JCM.39.9.3379-3381.2001 |
[5] | Hiramatsu, K., Hanaki, H., Ino, T., Yabuta, K., Oguri, T. and Tenover, F.C. (1997) Methicillin-Resistant Staphylococcus aureus Clinical Strain with Reduced Vancomycin Susceptibility. Journal of Antimicrobial Chemotherapy, 40, 135-136.
https://doi.org/10.1093/jac/40.1.135 |
[6] | Hiramatsu, K., Aritaka, N., Hanaki, H., Kawasaki, S., Hosoda, Y., Hori, S., et al. (1997) Dissemination in Japanese Hospitals of Strains of Staphylococcus aureus Heterogeneously Resistant to Vancomycin. Lancet, 350, 1670-1673.
https://doi.org/10.1016/S0140-6736(97)07324-8 |
[7] | Pournaras, S., Ikonomidis, A., Markogiannakis, A., Spanakis, N., Maniatis, A.N. and Tsakris, A. (2007) Characterization of Clinical Isolates of Pseudomonas aeruginosa Heterogeneously Resistant to Carbapenems. Journal of Medical Microbiology, 56, 66-70. https://doi.org/10.1099/jmm.0.46816-0 |
[8] | Pournaras, S., Ikonomidis, A., Markogiannakis, A., Maniatis, A.N., Tsakris, A., et al. (2005) Heteroresistance to Carbapenems in Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 55, 1055-1056.
https://doi.org/10.1093/jac/dki115 |
[9] | Sancak, B., Yagci, S., Gür, D., Gülay, Z., Ogunc, D., S?yletir, G., et al. (2013) Vancomycin and Daptomycin Minimum Inhibitory Concentration Distribution and Occurrence of Heteroresistance among Methicillin-Resistant Staphylococcus aureus Blood Isolates in Turkey. BMC Infectious Diseases, 13, Article No. 583.
https://doi.org/10.1186/1471-2334-13-583 |
[10] | Kirby, A., Mohandas, K., Broughton, C., Neal, T.J., Smith, G.W., Pai, P., et al. (2009) In Vivo Development of Heterogeneous Glycopeptide-Intermediate Staphylococcus aureus (hGISA), GISA and Daptomycin Resistance in a Patient with Meticillin-Resistant S. aureus Endocarditis. Journal of Medical Microbiology, 58, 376-380.
https://doi.org/10.1099/jmm.0.006486-0 |
[11] | Savini, V., Catavitello, C., Talia, M., Febbo, F., Balbinot, A., Pompilio, A., et al. (2009) Misidentification of Ampicillin-Sulbactam Heteroresistance in Acinetobacter baumannii Strains from ICU Patient. Journal of Infection, 58, 316-317. https://doi.org/10.1016/j.jinf.2009.02.001 |
[12] | 李玮, 王凯亮, 熊祝嘉, 李俊秋, 崔翠莲. 353株铜绿假单胞菌医院感染的临床分布与耐药性分析[J]. 中国实验诊断学, 2015(7): 1107-1109. |
[13] | 余建洪, 李敏, 何小平, 陈喻, 张肃川, 张小丹. 2016-2018年某医院耐碳青霉烯类铜绿假单胞菌的耐药性及临床特征分析[J]. 安徽医药, 2021, 25(5): 931-934. |
[14] | 莫善颖, 李梦薇, 韦柳华, 等. 铜绿假单胞菌的临床分布及耐药性分析[J]. 中华医院感染学杂志, 2011, 23(22): 5553-5555. |
[15] | 冯娜娜, 李华茵, 宋元林, 王琴, 周春妹, 谢红梅. 医院铜绿假单胞菌性肺炎对抗菌药物耐药性及死亡率相关性研究[J]. 中华医院感染学杂志, 2012, 22(13): 2917-2919+2957. |
[16] | Sharma, K.K. and Kalawat, U. (2010) Emerging Infections: Shewanella—A Series of Five Cases. Journal of Laboratory Physicians, 2, 61-65. https://doi.org/10.4103/0974-2727.72150 |
[17] | Iyer, R. and Hittinahalli, V. (2008) Modified PAP Method to Detect Heteroresistance to Vancomycin among Methicillin Resistant Staphylococcus aureus Isolates at a Tertiary Care Hospital. Indian Journal of Medical Microbiology, 26, 176-179. https://doi.org/10.1016/S0255-0857(21)01939-3 |
[18] | Hu, Q., Yu, Y., Gu, D., Xie, L., Chen, X., Xu, N., et al. (2019) Detection of “Hidden” Antimicrobial Drug Resistance. ACS Infectious Diseases, 5, 1252-1563. https://doi.org/10.1021/acsinfecdis.9b00132 |
[19] | Jia, X., Ma, W., He, J., Tian, X., Liu, H., Zou, H., et al. (2019) Heteroresistance to Cefepime in Pseudomonas aeruginosa Bacteremia. International Journal of Antimicrobial Agents, 55, Article No. 105832.
https://doi.org/10.1016/j.ijantimicag.2019.10.013 |
[20] | Alexandros, I., Athanassios, T., Maria, K., Spanakis, N., Maniatis, A.N. and Pournaras, S. (2010) Efflux System Overexpression and Decreased OprD Contribute to the Carbapenem Heterogeneity in Pseudomonas aeruginosa. FEMS Microbiology Letters, 279, 36-39. https://doi.org/10.1111/j.1574-6968.2007.00997.x |
[21] | Mei, S., Gao, Y., Zhu, C., Dong, C. and Chen, Y. (2014) Research of the Heteroresistance of Pseudomonas aeruginosa to Imipenem. International Journal of Clinical & Experimental Medicine, 8, 6129-6132. |
[22] | Xu, Y., Zheng, X., Zeng, W., Chen, T., Liao, W., Qian, J., et al. (2020) Mechanisms of Heteroresistance and Resistance to Imipenem in Pseudomonas aeruginosa. Infection and Drug Resistance, 13, 1419-1428.
https://doi.org/10.2147/IDR.S249475 |
[23] | He, J., Jia, X., Yang, S., Xu, X., Sun, K., Li, C., et al. (2017) Heteroresistance to Carbapenems in Invasive Pseudomonas aeruginosa Infections. International Journal of Antimicrobial Agents, 51, 413-421.
https://doi.org/10.1016/j.ijantimicag.2017.10.014 |
[24] | Oikonomou, O., Panopoulou, M. and Ikonomidis, A. (2011) Investigation of Carbapenem Heteroresistance among Different Sequence Types of Pseudomonas aeruginosa Clinical Isolates Reveals Further Diversity. Journal of Medical Microbiology, 60, 1556-1558. https://doi.org/10.1099/jmm.0.032276-0 |
[25] | Spyros, P., Alexandros, I., Evangelia, N., Kantzanou, M., Maniatis, A.N. and Tsakris, A. (2008) Piperacillin/Tazobactam-Heteroresistant Pseudomonas aeruginosa from Urinary Infection, Successfully Treated by Piperacillin/Tazobactam. Journal of Antimicrobial Chemotherapy, 61, 757-758. https://doi.org/10.1093/jac/dkm528 |
[26] | Hermes, D.M., Pitt, C.P., Lutz, L., Teixeira, A.B., Ribeiro, V.B., Netto, B., et al. (2013) Evaluation of Heteroresistance to Polymyxin B among Carbapenem-Susceptible and-Resistant Pseudomonas aeruginosa. Journal of Medical Microbiology, 62, 1184-1189. https://doi.org/10.1099/jmm.0.059220-0 |
[27] | Lin, J., Xu, C., Fang, R., Cao, J., Zhang, X., Zhao, Y., et al. (2019) Resistance and Heteroresistance to Colistin in Pseudomonas aeruginosa Isolates from Wenzhou, China. Antimicrobial Agents and Chemotherapy, 63, Article ID: e00556-19. https://doi.org/10.1128/AAC.00556-19 |
[28] | Hall, C.W., Hinz, A.J., Gagnon, L., Zhang, L., Nadeau, J.P., Copeland, S., et al. (2018) Pseudomonas aeruginosa Biofilm Antibiotic Resistance Gene ndvB Expression Requires the RpoS Stationary-Phase Sigma Factor. Applied and Environmental Microbiology Journal, 84, Article ID: e02762-17. https://doi.org/10.1128/AEM.02762-17 |
[29] | Endimiani, A., Perez, F. and Bonomo, R.A. (2008) Cefepime: A Reappraisal in an Era of Increasing Antimicrobial Resistance. Expert Review of Anti-Infective Therapy, 6, 805-824. https://doi.org/10.1586/14787210.6.6.805 |
[30] | Hocquet, D., Nordmann, P. and Garch, F.E. (2006) Involvement of the MexXY-OprM Efflux System in Emergence of Cefepime Resistance in Clinical Strains of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 50, 1347-1351. https://doi.org/10.1128/AAC.50.4.1347-1351.2006 |
[31] | Bagge, N., Hentzer, M., Andersen, J.B., Ciofu, O., Givskov, M. and H?iby, N. (2004) Dynamics and Spatial Distribution of Beta-Lactamase Expression in Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 48, 1168-1174. https://doi.org/10.1128/AAC.48.4.1168-1174.2004 |
[32] | Balasubramanian, D., Schneper, L., Merighi, M., Smith, R., Narasimhan, G., Lory, S., et al. (2012) The Regulatory Repertoire of Pseudomonas aeruginosa AmpC-Lactamase Regulator AmpR Includes Virulence Genes. PLoS ONE, 7, Article No. e34067. https://doi.org/10.1371/journal.pone.0034067 |
[33] | World Health Organization (2020, October 13) Antimicrobial Resistance.
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance |
[34] | Ozturk, I.I., Sirinkaya, E.T., Cakmak, M., Gürgan, M., Ceyhan, D., Panagiotou, N., et al. (2020) Structural and Biological Features of Bismuth(III) Halide Complexes with Heterocyclic Thioamides. Journal of Molecular Structure, 1227, Article ID: 129730. https://doi.org/10.1016/j.molstruc.2020.129730 |
[35] | 陈婷, 师健友, 戚宝文, 白兰, 周艳平, 段醒妹, 等. N-取代苯基-5-取代苯基-3H-1,2,4-三唑-3-硫酮衍生物的合成及抗菌活性研究[J]. 中国抗生素杂志, 2019, 44(4): 437-449. |
[36] | 谭丽, 程优, 柏乐, 王玲, 贺腊姑, 胡敏. 抗菌肽lycosin-I对铜绿假单胞菌临床分离株的体外抗菌活性分析[J]. 临床检验杂志, 2018, 36(4): 253-258. |
[37] | 王彩虹, 单志炜, 邓国为, 张耀谋. 新型鹅去氧胆酸衍生物的合成及其抗菌活性[J]. 合成化学, 2019, 27(8): 638-642. |
[38] | 叶祥, 周晶, 潘佳, 何菱, 齐庆蓉. 新型氟喹诺酮类衍生物的设计合成及其体外抗菌活性的初探[J]. 华西药学杂志, 2015, 30(1): 1-4. |
[39] | 王广成, 何典雄, 刘文超, 彭知云. 新型甲硝唑-苯腙类化合物的设计, 合成及抗菌活性研究[J]. 化学试剂, 2016, 38(7): 602-607. |
[40] | Moustafa, D.A., Wu, A.W., Zamora, D., Daly, S.M., Sturge, C.R., Pybus, C., Geller, B.L., et al. (2021) Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers Retain Activity against Multidrug-Resistant Pseudomonas aeruginosa in Vitro and in Vivo. mBio, 12, Article ID: e02411-20. https://doi.org/10.1128/mBio.02411-20 |