全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

HCN通道在癫痫中的作用
The Role of HCN Channels in Epilepsy

DOI: 10.12677/IJPN.2022.111001, PP. 1-6

Keywords: HCN通道,癫痫,TRIP8b,突变
HCN Channels
, Epilepsy, TRIP8b, Mutation

Full-Text   Cite this paper   Add to My Lib

Abstract:

癫痫是一种大脑神经元反复异常放电所致的短暂性脑功能障碍的慢性神经系统疾病。中枢神经系统兴奋性谷氨酸能与抑制性γ-氨基丁酸能神经递质间的平衡紊乱和促离子型受体等离子通道功能的改变可直接诱导癫痫发作。研究表明超极化激活的环核苷酸阳离子通道(Hyperpolarization activates cyclic nucleotidegated channels, HCN)具有兴奋和抑制两种不同的功能状态,HCN通道通过对膜电位、膜电阻和神经元兴奋性进行调节参与中枢神经系统疾病的病理生理过程。HCN通道突变、辅助亚基TRIP8b缺失和HCN通道抑制均与癫痫发作相关。本文将重点阐述HCN通道作用于癫痫的神经细胞和分子生物学机制,有助于更有效的对症治疗癫痫,并减少治疗的副作用,并为进一步研发新的抗癫痫药物的靶向干预治疗开辟新的途径和策略。
Epilepsy is a chronic neurological disease characterized by a transient brain dysfunction due to repeated abnormal discharges of brain neurons. The imbalance between excitatory glutamate and inhibitory gamma-aminobutyric acid (GABA) neurotransmitter in the central nervous system and changes in ionic functions of ionotropic receptors directly induce epileptic seizures. Accumulating evidence suggests that hyperpolarization activates cyclic nucleotide-gated channels (HCN) have ex-citatory and inhibitory functional states. HCN channels are widely implicated in pathophysiological process of specific nervous diseases through regulating membrane potential and membrane resistance as well as excitability of neurons. Mutation, deletion of auxiliary subunit TRIP8b and inhibition of HCN channel were associated with epileptic seizures. This review focuses on the molecular and cellular mechanisms of the protective effect of HCN channel on epilepsy, which may help to treat the symptoms more effectively and reduce the side effects of treatment, aiming at providing new strategies and ideas of new antiepileptic drugs for the targeted intervention therapy of epilepsy.

References

[1]  Sun, M., Ruan, X., Li, Y., et al. (2021) Clinical Characteristics of 30 COVID-19 Patients with Epilepsy: A Retrospective Study in Wuhan. International Journal of Infectious Diseases, 103, 647-653.
https://doi.org/10.1016/j.ijid.2020.09.1475
[2]  Lum, G.R., Olson, C.A. and Hsiao, E.Y. (2020) Emerging Roles for the Intestinal Microbiome in Epilepsy. Neurobiology of Disease, 135, Article ID: 104576.
https://doi.org/10.1016/j.nbd.2019.104576
[3]  Li, J., Zhang, X., Li, N., et al. (2020) Mortality Rates in People with Convulsive Epilepsy in Rural Northeast China. Frontiers in Neurology, 11, Article No. 1013.
https://doi.org/10.3389/fneur.2020.01013
[4]  Shao, Y. and Chen, Y. (2017) Pathophysiology and Clinical Utility of Non-Coding RNAs in Epilepsy. Frontiers in Molecular Neuroscience, 10, Article No. 249.
https://doi.org/10.3389/fnmol.2017.00249
[5]  Bonzanni, M., DiFrancesco, J.C., Milanesi, R., et al. (2018) A Novel de Novo HCN1 Loss-of-Function Mutation in Genetic Generalized Epilepsy Causing Increased Neuronal Excita-bility. Neurobiology of Disease, 118, 55-63.
https://doi.org/10.1016/j.nbd.2018.06.012
[6]  DiFrancesco, J.C. and DiFrancesco, D. (2015) Dysfunctional HCN Ion Channels in Neurological Diseases. Frontiers in Cellular Neuroscience, 6, Article No. 174.
https://doi.org/10.3389/fncel.2015.00071
[7]  Lee, C.H. and MacKinnon, R. (2019) Voltage Sensor Movements during Hyperpolarization in the HCN Channel. Cell, 179, 1582-1589.e1587.
https://doi.org/10.1016/j.cell.2019.11.006
[8]  Silbernagel, N., Walecki, M., Schafer, M.K., et al. (2018) The VAMP-Associated Protein VAPB Is Required for Cardiac and Neuronal Pacemaker Channel Function. FASEB Journal, 32, 6159-6173.
https://doi.org/10.1096/fj.201800246R
[9]  Lyman, K.A., Han, Y. and Chetkovich, D.M. (2017) Animal Models Suggest the TRIP8b-HCN Interaction Is a Therapeutic Target for Major Depressive Disorder. Expert Opinion on Thera-peutic Targets, 21, 235-237.
https://doi.org/10.1080/14728222.2017.1287899
[10]  Brennan, G.P., Baram, T.Z. and Poolos, N.P. (2016) Hy-perpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels in Epilepsy. Cold Spring Harbor Perspectives in Medicine, 6, a022384.
https://doi.org/10.1101/cshperspect.a022384
[11]  Ni, L., Xu, Y., Dong, S., et al. (2020) The Potential Role of the HCN1 Ion Channel and BDNF-mTOR Signaling Pathways and Synaptic Transmission in the Alleviation of PTSD. Translational Psychiatry, 10, 101.
https://doi.org/10.1038/s41398-020-0782-1
[12]  Hammelmann, V., Stieglitz, M.S., Hulle, H., et al. (2019) Abol-ishing cAMP Sensitivity in HCN2 Pacemaker Channels Induces Generalized Seizures. JCI Insight, 4, e126418.
https://doi.org/10.1172/jci.insight.126418
[13]  Nakagawa, T., Yasaka, T., Nakashima, N., et al. (2020) Expression of the Pacemaker Channel HCN4 in Excitatory Interneurons in the Dorsal Horn of the Murine Spinal Cord. Molecular Brain, 13, 127.
https://doi.org/10.1186/s13041-020-00666-6
[14]  Sartiani, L., Mannaioni, G., Masi, A., et al. (2017) The Hy-perpolarization-Activated Cyclic Nucleotide-Gated Channels: From Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacological Reviews, 69, 354-395.
https://doi.org/10.1124/pr.117.014035
[15]  Ramentol, R., Perez, M.E. and Larsson, H.P. (2020) Gating Mecha-nism of Hyperpolarization-Activated HCN Pacemaker Channels. Nature Communications, 11, Article No. 1419.
https://doi.org/10.1038/s41467-020-15233-9
[16]  Lussier, Y., Furst, O., Fortea, E., et al. (2019) Disease-Linked Mutations Alter the Stoichiometries of HCN-KCNE2 Complexes. Scientific Reports, 9, Article No. 9113.
https://doi.org/10.1038/s41598-019-45592-3
[17]  Tanguay, J., Callahan, K.M. and D’Avanzo, N. (2019) Charac-terization of Drug Binding within the HCN1 Channel Pore. Scientific Reports, 9, Article No. 465.
https://doi.org/10.1038/s41598-018-37116-2
[18]  Chen, S.J., Xu, Y., Liang, Y.M., et al. (2019) Identification and Characterization of a Series of Novel HCN Channel Inhibitors. Acta Pharmaceutica Sinica, 40, 746-754.
https://doi.org/10.1038/s41401-018-0162-z
[19]  Marini, C., Porro, A., Rastetter, A., et al. (2018) HCN1 Mutation Spectrum: From Neonatal Epileptic Encephalopathy to Benign Generalized Epilepsy and Beyond. Brain, 141, 3160-3178.
[20]  Huang, Z., Walker, M.C. and Shah, M.M. (2009) Loss of Dendritic HCN1 Subunits Enhances Cortical Excitability and Epileptogenesis. Journal of Neuroscience, 29, 10979-10988.
https://doi.org/10.1523/JNEUROSCI.1531-09.2009
[21]  Fisher, D.W., Luu, P., Agarwal, N., et al. (2018) Loss of HCN2 Leads to Delayed Gastrointestinal Motility and Reduced Energy Intake in Mice. PLoS ONE, 13, e0193012.
https://doi.org/10.1371/journal.pone.0193012
[22]  Han, Y., Lyman, K.A., Foote, K.M., et al. (2020) The Structure and Function of TRIP8b, an Auxiliary Subunit of Hyperpolarization-Activated Cyclic-Nucleotide Gated Channels. Channels (Austin), 14, 110-122.
https://doi.org/10.1080/19336950.2020.1740501
[23]  Bankston, J.R., DeBerg, H.A., Stoll, S., et al. (2017) Mech-anism for the Inhibition of the cAMP Dependence of HCN Ion Channels by the Auxiliary Subunit TRIP8b. Journal of Biological Chemistry, 292, 17794-17803.
https://doi.org/10.1074/jbc.M117.800722
[24]  Porro, A., Binda, A., Pisoni, M., et al. (2020) Rational Design of a Mutation to Investigate the Role of the Brain Protein TRIP8b in Limiting the cAMP Response of HCN Channels in Neurons. Journal of General Physiology, 152, e202012596.
https://doi.org/10.1085/jgp.202012596
[25]  Gu, P., Wu, T., Zou, M., et al. (2020) Multi-Head Self-Attention Model for Classification of Temporal Lobe Epilepsy Subtypes. Frontiers in Physiology, 11, Article ID: 604764.
https://doi.org/10.3389/fphys.2020.604764
[26]  Foote, K.M., Lyman, K.A., Han, Y., et al. (2019) Phosphorylation of the HCN Channel Auxiliary Subunit TRIP8b Is Altered in an Animal Model of Temporal Lobe Epilepsy and Modulates Channel Function. Journal of Biological Chemistry, 294, 15743-15758.
https://doi.org/10.1074/jbc.RA119.010027
[27]  Chan, C.S., Glajch, K.E., Gertler, T.S., et al. (2011) HCN Channelopathy in External Globus Pallidus Neurons in Models of Parkinson’s Disease. Nature Neuroscience, 14, 85-92.
https://doi.org/10.1038/nn.2692
[28]  Frigerio, F., Flynn, C., Han, Y., et al. (2018) Neuroinflammation Al-ters Integrative Properties of Rat Hippocampal Pyramidal Cells. Molecular Neurobiology, 55, 7500-7511.
https://doi.org/10.1007/s12035-018-0915-1
[29]  Jafarian, M., Esmaeil, A.M. and Karimzadeh, F. (2020) Experi-mental Models of Absence Epilepsy. Basic and Clinical Neuroscience, 11, 715-726.
https://doi.org/10.32598/bcn.11.6.731.1
[30]  Kozak, G. (2019) Insights on the Role of Thalamocortical HCN Channels in Absence Epilepsy. Journal of Neuroscience, 39, 578-580.
https://doi.org/10.1523/JNEUROSCI.2063-18.2018
[31]  Iacone, Y., Morais, T.P., David, F., et al. (2021) Sys-temic Administration of Ivabradine, a Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Inhibitor, Blocks Spontaneous Absence Seizures. Epilepsia, 62, 1729-1743.
https://doi.org/10.1111/epi.16926
[32]  Chung, W.K., Shin, M., Jaramillo, T.C., et al. (2009) Absence Epilepsy in Apathetic, a Spontaneous Mutant Mouse Lacking the h Channel Subunit, HCN2. Neurobiology of Disease, 33, 499-508.
https://doi.org/10.1016/j.nbd.2008.12.004
[33]  Heuermann, R.J., Jaramillo, T.C., Ying, S.W., et al. (2016) Reduc-tion of Thalamic and Cortical Ih by Deletion of TRIP8b Produces a Mouse Model of Human Absence Epilepsy. Neuro-biology of Disease, 85, 81-92.
https://doi.org/10.1016/j.nbd.2015.10.005
[34]  DiFrancesco, J.C., Barbuti, A., Milanesi, R., et al. (2011) Recessive Loss-of-Function Mutation in the Pacemaker HCN2 Channel Causing Increased Neuronal Excitability in a Patient with Idiopathic Generalized Epilepsy. Journal of Neuroscience, 31, 17327-17337.
https://doi.org/10.1523/JNEUROSCI.3727-11.2011
[35]  McCafferty, C., Connelly, W.M., Celli, R., et al. (2018) Genetic Rescue of Absence Seizures. CNS Neuroscience & Therapeutics, 24, 745-758.
https://doi.org/10.1111/cns.12858
[36]  David, F., Carcak, N., Furdan, S., et al. (2018) Suppression of Hyperpolar-ization-Activated Cyclic Nucleotide-Gated Channel Function in Thalamocortical Neurons Prevents Genetically Deter-mined and Pharmacologically Induced Absence Seizures. Journal of Neuroscience, 38, 6615-6627.
https://doi.org/10.1523/JNEUROSCI.0896-17.2018
[37]  Noam, Y., Bernard, C. and Baram, T.Z. (2011) Towards an Integrated View of HCN Channel Role in Epilepsy. Current Opinion in Neurobiology, 21, 873-879.
https://doi.org/10.1016/j.conb.2011.06.013
[38]  Makinson, C.D., Tanaka, B.S., Sorokin, J.M., et al. (2017) Regu-lation of Thalamic and Cortical Network Synchrony by Scn8a. Neuron, 93, 1165-1179.e1166.
https://doi.org/10.1016/j.neuron.2017.01.031

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133