|
白血病免疫治疗靶点研究进展
|
Abstract:
白血病是一类造血干/祖细胞的恶性克隆性疾病,其治疗方法主要有化学治疗、造血干细胞移植、免疫治疗和分子靶向治疗等。近年来,白血病的免疫治疗取得了重大突破,成为研究热点,尤其是嵌合抗原受体修饰T细胞(chimeric antigen receptor T cells, CAR-T)作为新型治疗模式备受关注。CAR-T细胞的治疗基础为白血病细胞上的特异性抗原,即免疫治疗靶点。笔者对近年来白血病CAR-T细胞治疗靶点的相关研究进行综述。
Leukemia is defined as malignant neoplasm of blood-forming tissues, which characterized as abnormal proliferation of leukocytes. The main treatment includes chemotherapy, allogeneic hematopoietic stem cell transplantation, immunotherapy and cellular therapy. Recently, immunotherapy, is an emerging novel therapy and has achieved dramatic success in clinical practice, especially for chimeric antigen receptor (CAR) T-cell. The basic of CAR-T therapy is tumor specific antigen, this review summarizes related potential tumor antigens in leukemia for CAR-T therapy.
[1] | Peinert, S., Prince, H.M., Guru, P.M., et al. (2010) Gene-Modified T Cells as Immunotherapy for Multiple Myeloma and Acute Myeloid Leukemia Expressing the Lewis Y Antigen. Gene Therapy, 17, 678-686.
https://doi.org/10.1038/gt.2010.21 |
[2] | Ritchie, D.S., Neeson, P.J., Khot, A., et al. (2013) Persistence and Efficacy of Second-Generation CAR T Cell against the LeY Antigen in Acute Myeloid Leukemia. Molecular Therapy, 21, 2122-2129. https://doi.org/10.1038/mt.2013.154 |
[3] | Mcmillan, S.J. and Crocker, P.R. (2008) CD33-Related Sialic-Acid-Binding Immunoglobulin-Like Lectins in Health and Disease. Carbohydrate Research, 343, 2050-2056. https://doi.org/10.1016/j.carres.2008.01.009 |
[4] | Dutour, A., Marin, V., Pizzitola, I., et al. (2012) In Vitro and in Vivo Antitumor Effect of Anti-CD33 Chimeric Receptor-Expressing EBV-CTL against CD33 Acute Myeloid Leukemia. Advances in Hematology, 2012, Article ID: 683065.
https://doi.org/10.1155/2012/683065 |
[5] | Wang, Q., Wang, Y., Lv, H., et al. (2015) Treatment of CD33-Directed Chimeric Antigen Receptor-Modified T Cells in One Patient with Relapsed and Refractory Acute Myeloid Leukemia. Molecular Therapy, 23, 184-191.
https://doi.org/10.1038/mt.2014.164 |
[6] | Minagawa, K., Jamil, M.O., Al-Obaidi, M., et al. (2016) In Vitro Pre-Clinical Validation of Suicide Gene Modified Anti-CD33 Redirected Chimeric Antigen Receptor T-Cells for Acute Myeloid Leukemia. PLoS ONE, 11, e166891.
https://doi.org/10.1371/journal.pone.0166891 |
[7] | Jordan, C.T., Upchurch, D., Szilvassy, S.J., et al. (2000) The Interleukin-3 Receptor Alpha Chain Is a Unique Marker for Human Acute Myelogenous Leukemia Stem Cells. Leukemia, 14, 1777-1784.
https://doi.org/10.1038/sj.leu.2401903 |
[8] | Mardiros, A., Dos, S.C., Mcdonald, T., et al. (2013) T Cells Expressing CD123-Specific Chimeric Antigen Receptors Exhibit Specific Cytolytic Effector Functions and Antitumor Effects against human Acute Myeloid Leukemia. Blood, 122, 3138-3148. https://doi.org/10.1182/blood-2012-12-474056 |
[9] | Keyhani, A., Huh, Y.O., Jendiroba, D., et al. (2000) Increased CD38 Expression Is Associated with Favorable Prognosis in Adult Acute Leukemia. Leukemia Research, 24, 153-159. https://doi.org/10.1016/S0145-2126(99)00147-2 |
[10] | Yoshida, T., Mihara, K., Takei, Y., et al. (2016) All-Trans Retinoic Acid Enhances Cytotoxic Effect of T Cells with an Anti-CD38 Chimeric Antigen Receptor in Acute Myeloid Leukemia. Clinical & Translational Immunology, 5, e116.
https://doi.org/10.1038/cti.2016.73 |
[11] | Legras, S., Gunthert, U., Stauder, R., et al. (1998) A Strong Expression of CD44-6v Correlates with Shorter Survival of Patients with Acute Myeloid Leukemia. Blood, 91, 3401-3413. https://doi.org/10.1182/blood.V91.9.3401 |
[12] | Casucci, M., Nicolis Di Robilant, B., Falcone, L., et al. (2013) CD44v6-Targeted T Cells Mediate Potent Antitumor Effects against Acute Myeloid Leukemia and Multiple Myeloma. Blood, 122, 3461-3472.
https://doi.org/10.1182/blood-2013-04-493361 |
[13] | Wang, H., Kaur, G., Sankin, A.I., Chen, F., Guan, F. and Zang, X. (2019) Immune Checkpoint Blockade and CAR-T Cell Therapy in Hematologic Malignancies. Journal of Hematology & Oncology, 12, 59.
https://doi.org/10.1186/s13045-019-0746-1 |
[14] | Kaufmann, Y., Amariglio, N., Rosenthal, E., Hirsch, Y.J., Many, A. and Rechavi, G. (2005) Proliferation Response of Leukemic Cells to CD70 Ligation Oscillates with Recurrent Remission and Relapse in a Low-Grade Lymphoma. The Journal of Immunology, 175, 6940-6947. https://doi.org/10.4049/jimmunol.175.10.6940 |
[15] | Sauer, T., Parikh, K., Sharma, S., Omer, B., Sedloev, D., Chen, Q., Angenendt, L., Schliemann, C., Schmitt, M., Müller-Tidow, C., Gottschalk, S. and Rooney, C.M. (2021) CD70-Specific CAR T Cells Have Potent Activity against Acute Myeloid Leukemia without HSC Toxicity. Blood, 138, 318-330. https://doi.org/10.1182/blood.2020008221 |
[16] | Salih, H.R., Antropius, H., Gieseke, F., et al. (2003) Functional Expression and Release of Ligands for the Activating Immunoreceptor NKG2D in Leukemia. Blood, 102, 1389-1396. https://doi.org/10.1182/blood-2003-01-0019 |
[17] | Murad, J. (2016) Safety Data from a First-in-Human Phase 1 Trial of NKG2D Chimeric Antigen Receptor-T Cells in AML/MDS and Multiple Myeloma. |
[18] | Pan, X.Q., Zheng, X., Shi, G., et al. (2002) Strategy for the Treatment of Acute Myelogenous Leukemia Based on Folate Receptor Beta-Targeted Liposomal Doxorubicin Combined with Receptor Induction Using All-Trans Retinoic Acid. Blood, 100, 594-602. https://doi.org/10.1182/blood.V100.2.594 |
[19] | Wang, H., Zheng, X., Behm, F.G., et al. (2000) Differentiation-Independent Retinoid Induction of Folate Receptor Type Beta, a Potential Tumor Target in Myeloid Leukemia. Blood, 96, 3529-3536.
https://doi.org/10.1182/blood.V96.10.3529 |
[20] | Lynn, R.C., Poussin, M., Kalota, A., et al. (2015) Targeting of Folate Receptor Beta on Acute Myeloid Leukemia Blasts with Chimeric Antigen Receptor-Expressing T Cells. Blood, 125, 3466-3476.
https://doi.org/10.1182/blood-2014-11-612721 |
[21] | Lynn, R.C., Feng, Y., Schutsky, K., et al. (2016) High-Affinity FRbeta-Specific CAR T Cells Eradicate AML and Normal Myeloid Lineage without HSC Toxicity. Leukemia, 30, 1355-1364. https://doi.org/10.1038/leu.2016.35 |
[22] | Chen, L., Mao, H., Zhang, J., et al. (2017) Targeting FLT3 by Chimeric Antigen Receptor T Cells for the Treatment of Acute Myeloid Leukemia. Leukemia, 31, 1830-1834. https://doi.org/10.1038/leu.2017.147 |
[23] | Kiyoi, H., Ohno, R., Ueda, R., et al. (2002) Mechanism of Constitutive Activation of FLT3 with Internal Tandem Duplication in the Juxtamembrane Domain. Oncogene, 21, 2555-2563. https://doi.org/10.1038/sj.onc.1205332 |
[24] | Marofi, F., Rahman, H.S., Al-Obaidi, Z.M.J., Jalil, A.T., Abdelbasset, W.K., Suksatan, W., Dorofeev, A.E., Shomali, N., Chartrand, M.S., Pathak, Y., Hassanzadeh, A., Baradaran, B., Ahmadi, M., Saeedi, H., Tahmasebi, S. and Jarahian, M. (2021) Novel CAR T Therapy Is a Ray of Hope in the Treatment of Seriously Ill AML Patients. Stem Cell Research & Therapy, 12, 465. https://doi.org/10.1186/s13287-021-02420-8 |
[25] | Laborda, E., Mazagova, M., Shao, S., et al. (2017) Development of A Chimeric Antigen Receptor Targeting C-Type Lectin-Like Molecule-1 for Human Acute Myeloid Leukemia. International Journal of Molecular Sciences, 18, 2259.
https://doi.org/10.3390/ijms18112259 |
[26] | Zhang, H., Wang, P., Li, Z., He, Y., Gan, W. and Jiang, H. (2021) Anti-CLL1 Chimeric Antigen Receptor T-Cell Therapy in Children with Relapsed/Refractory Acute Myeloid Leukemia. Clinical Cancer Research, 27, 3549-3555.
https://doi.org/10.1158/1078-0432.CCR-20-4543 |
[27] | Nakazawa, Y., Matsuda, K., Kurata, T., et al. (2016) Anti-Proliferative Effects of T Cells Expressing a Ligand-Based Chimeric Antigen Receptor against CD116 on CD34+ Cells of Juvenile Myelomonocytic Leukemia. Journal of Hematology & Oncology, 9, 27. https://doi.org/10.1186/s13045-016-0256-3 |
[28] | Lee, W.S., Ye, Z., Cheung, A.M.S., Goh, Y.P.S., Oh, H.L.J., Rajarethinam, R., Ye, S.P., Soh, M.K., Chan, E.H.L., Tan, L.K., Tan, S.Y., Chuah, C., Chng, W.J., Connolly, J.E. and Wang, C.I. (2021) Effective Killing of Acute Myeloid Leukemia by TIM-3 Targeted Chimeric Antigen Receptor T Cells. Molecular Cancer Therapeutics, 20, 1702-1712.
https://doi.org/10.1158/1535-7163.MCT-20-0155 |
[29] | He, X., Feng, Z., Ma, J., Ling, S., Cao, Y., Gurung, B., Wu, Y., Katona, B.W., O’Dwyer, K.P., Siegel, D.L., June, C.H. and Hua, X. (2020) Bispecific and Split CAR T Cells Targeting CD13 and TIM3 Eradicate Acute Myeloid Leukemia. Blood, 135, 713-723. https://doi.org/10.1182/blood.2019002779 |
[30] | Uckun, F.M., Jaszcz, W., Ambrus, J.L., et al. (1988) Detailed Studies on Expression and Function of CD19 Surface Determinant by Using B43 Monoclonal Antibody and the Clinical Potential of Anti-CD19 Immunotoxins. Blood, 71, 13-29. https://doi.org/10.1182/blood.V71.1.13.13 |
[31] | Brentjens, R.J., Latouche, J., Santos, E., et al. (2003) Eradication of Systemic B-Cell Tumors by Genetically Targeted Human T Lymphocytes Co-Stimulated by CD80 and Interleukin-15. Nature Medicine, 9, 279-286.
https://doi.org/10.1038/nm827 |
[32] | Cooper, L.J.N., Topp, M.S., Serrano, L.M., et al. (2003) T-Cell Clones Can Be Rendered Specific for CD19: Toward the Selective Augmentation of the Graft-versus-B-Lineage Leukemia Effect. Blood, 101, 1637-1644.
https://doi.org/10.1182/blood-2002-07-1989 |
[33] | Kochenderfer, J.N., Feldman, S.A., Zhao, Y., et al. (2009) Construction and Preclinical Evaluation of an anti-CD19 Chimeric Antigen Receptor. Journal of Immunotherapy (Hagerstown, Md.: 1997), 32, 689-702.
https://doi.org/10.1097/CJI.0b013e3181ac6138 |
[34] | Maude, S.L., Teachey, D.T., Porter, D.L., et al. (2015) CD19-Targeted Chimeric Antigen Receptor T-Cell Therapy for Acute Lymphoblastic Leukemia. Blood, 125, 4017-4023. https://doi.org/10.1182/blood-2014-12-580068 |
[35] | Huh, Y.O., Keating, M.J., Saffer, H.L., et al. (2001) Higher Levels of Surface CD20 Expression on Circulating Lymphocytes Compared with Bone Marrow and Lymph Nodes in B-Cell Chronic Lymphocytic Leukemia. American Journal of Clinical Pathology, 116, 437-443. https://doi.org/10.1309/438N-E0FH-A5PR-XCAC |
[36] | Borowitz, M.J., Shuster, J., Carroll, A.J., et al. (1997) Prognostic Significance of Fluorescence Intensity of Surface Marker Expression in Childhood B-Precursor Acute Lymphoblastic Leukemia. A Pediatric Oncology Group Study. Blood, 89, 3960-3966. https://doi.org/10.1182/blood.V89.11.3960 |
[37] | Thomas, D.A., O’Brien, S., Jorgensen, J.L., et al. (2009) Prognostic Significance of CD20 Expression in Adults with De Novo Precursor B-Lineage Acute Lymphoblastic Leukemia. Blood, 113, 6330-6337.
https://doi.org/10.1182/blood-2008-04-151860 |
[38] | Butler, L.A., Tam, C.S. and Seymour, J.F. (2017) Dancing Partners at the Ball: Rational Selection of Next Generation Anti-CD20 Antibodies for Combination Therapy of Chronic Lymphocytic Leukemia in the Novel Agents Era. Blood Reviews, 31, 318-327. https://doi.org/10.1016/j.blre.2017.05.002 |
[39] | Watanabe, K., Terakura, S., Martens, A.C., et al. (2015) Target Antigen Density Governs the Efficacy of Anti-CD20- CD28-CD3 Zeta Chimeric Antigen Receptor-Modified Effector CD8+ T Cells. Journal of Immunology (Baltimore, Md.: 1950), 194, 911-920. https://doi.org/10.4049/jimmunol.1402346 |
[40] | Mussai, F., Campana, D., Bhojwani, D., et al. (2010) Cytotoxicity of the Anti-CD22 Immunotoxin HA22 (CAT-8015) against Paediatric Acute Lymphoblastic Leukaemia. British Journal of Haematology, 150, 352-358.
https://doi.org/10.1111/j.1365-2141.2010.08251.x |
[41] | Haso, W., Lee, D.W., Shah, N.N., et al. (2013) Anti-CD22-Chimeric Antigen Receptors Targeting B-Cell Precursor Acute Lymphoblastic Leukemia. Blood, 121, 1165-1174. https://doi.org/10.1182/blood-2012-06-438002 |
[42] | Fry, T.J., Shah, N.N., Orentas, R.J., et al. (2017) CD22-Targeted CAR T Cells Induce Remission in B-ALL That Is Naive or Resistant to CD19-Targeted CAR Immunotherapy. Nature Medicine, 24, 20-28.
https://doi.org/10.1038/nm.4441 |
[43] | Giordano Attianese, G.M.P., Marin, V., Hoyos, V., et al. (2011) In Vitro and in Vivo Model of a Novel Immunotherapy Approach for Chronic Lymphocytic Leukemia by Anti-CD23 Chimeric Antigen Receptor. Blood, 117, 4736-4745.
https://doi.org/10.1182/blood-2010-10-311845 |
[44] | Mamonkin, M., Rouce, R.H., Tashiro, H., et al. (2015) A T-Cell-Directed Chimeric Antigen Receptor for the Selective Treatment of T-Cell Malignancies. Blood, 126, 983-992. https://doi.org/10.1182/blood-2015-02-629527 |
[45] | Chen, K.H., Wada, M., Pinz, K.G., et al. (2017) Preclinical Targeting of Aggressive T-Cell Malignancies Using Anti-CD5 Chimeric Antigen Receptor. Leukemia, 31, 2151-2160. https://doi.org/10.1038/leu.2017.8 |
[46] | Gomes-Silva, D., Srinivasan, M., Sharma, S., et al. (2017) CD7-Edited T Cells Expressing a CD7-Specific CAR for the Therapy of T-Cell Malignancies. Blood, 130, 285-296. https://doi.org/10.1182/blood-2017-01-761320 |
[47] | Png, Y.T., Vinanica, N., Kamiya, T., et al. (2017) Blockade of CD7 Expression in T Cells for Effective Chimeric Antigen Receptor Targeting of T-Cell Malignancies. Blood Advances, 1, 2348-2360.
https://doi.org/10.1182/bloodadvances.2017009928 |
[48] | Chen, K.H., Wada, M., Firor, A.E., et al. (2016) Novel Anti-CD3 Chimeric Antigen Receptor Targeting of Aggressive T Cell Malignancies. Oncotarget, 7, 56219-56232. https://doi.org/10.18632/oncotarget.11019 |
[49] | Hudecek, M., Schmitt, T.M., Baskar, S., et al. (2010) The B-Cell Tumor-Associated Antigen ROR1 Can Be Targeted with T Cells Modified to Express a ROR1-Specific Chimeric Antigen Receptor. Blood, 116, 4532-4541.
https://doi.org/10.1182/blood-2010-05-283309 |
[50] | Hudecek, M., Lupo-Stanghellini, M., Kosasih, P.L., et al. (2013) Receptor Affinity and Extracellular Domain Modifications Affect Tumor Recognition by ROR1-Specific Chimeric Antigen Receptor T Cells. Clinical Cancer Research, 19, 3153-3164. https://doi.org/10.1158/1078-0432.CCR-13-0330 |
[51] | Berger, C., Sommermeyer, D., Hudecek, M., et al. (2015) Safety of Targeting ROR1 in Primates with Chimeric Antigen Receptor-Modified T Cells. Cancer Immunology Research, 3, 206-216.
https://doi.org/10.1158/2326-6066.CIR-14-0163 |
[52] | Perera, L.P., Zhang, M., Nakagawa, M., et al. (2017) Chimeric Antigen Receptor Modified T Cells That Target Chemokine Receptor CCR4 as a Therapeutic Modality for T-Cell Malignancies. American Journal of Hematology, 92, 892-901. https://doi.org/10.1002/ajh.24794 |
[53] | Qin, H., Cho, M., Haso, W., et al. (2015) Eradication of B-ALL Using Chimeric Antigen Receptor-Expressing T Cells Targeting the TSLPR Oncoprotein. Blood, 126, 629-639. https://doi.org/10.1182/blood-2014-11-612903 |
[54] | Faitschuk, E., Hombach, A.A., Frenzel, L.P., et al. (2016) Chimeric Antigen Receptor T Cells Targeting Fc mu Receptor Selectively Eliminate CLL Cells While Sparing Healthy B Cells. Blood, 128, 1711-1722.
https://doi.org/10.1182/blood-2016-01-692046 |
[55] | Pinz, K., Liu, H., Golightly, M., et al. (2016) Preclinical Targeting of Human T-Cell Malignancies Using CD4-Specific Chimeric Antigen Receptor (CAR)-Engineered T Cells. Leukemia, 30, 701-707. https://doi.org/10.1038/leu.2015.311 |
[56] | Ramos, C.A., Savoldo, B., Torrano, V., et al. (2016) Clinical Responses with T Lymphocytes Targeting Malignancy-Associated Kappa Light Chains. The Journal of Clinical Investigation, 126, 2588-2596.
https://doi.org/10.1172/JCI86000 |
[57] | Vera, J., Savoldo, B., Vigouroux, S., et al. (2006) T Lymphocytes Redirected against the Kappa Light Chain of Human Immunoglobulin Efficiently Kill Mature B Lymphocyte-Derived Malignant Cells. Blood, 108, 3890-3897.
https://doi.org/10.1182/blood-2006-04-017061 |