全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习与立体视觉的四大管道位移监测系统
Displacement Monitoring System of Four Pipelines Based on Deep Learning and Stereo Vision

DOI: 10.12677/JSTA.2022.101007, PP. 45-59

Keywords: 立体视觉,深度学习,四大管道位移,在线测量
Stereo Vision
, Deep Learning, Displacement of Four Pipelines, Online Measurement

Full-Text   Cite this paper   Add to My Lib

Abstract:

火力发电厂的“四大管道”长期处于高温高压的运行状态下,在机组的常年运行过程中,由于调峰等电力任务的存在,“四大管道”的管道会发生蠕变从而产生位移,因此需要对其进行监测进而保障机组运行安全。为了提高测量精度和降低测量用时,从而达到高精度三维管道位移实时监测的目的,提出了一种基于立体视觉与深度学习相结合的非接触式四大管道位移在线测量系统。该系统使用两台相机对固定于四大管道上的棋盘格标靶进行拍摄,捕获图像利用深度学习神经网络进行处理,无需单独对相机进行畸变矫正与双目矫正,实验室标定之后即可用于现场实际环境的测量。在实现了四大管道三维位移的高精度监测的同时,使得测量操作更加简洁、系统智能化程度进一步提高。实验结果表明:该系统测量的标准差小于0.24 mm,位移测量误差小于0.3%,单点测量时间小于0.1 s,是一套适用于四大管道高精度三维位移实时监测的测量系统。
The “four pipelines” of thermal power plant have been operating under high temperature and high pressure for a long time. During the perennial operation of the unit, due to the existence of peak shaving and other power tasks, the pipelines of the “four pipelines” will creep and produce displacement. Hence, the monitor of pipelines is needed to ensure the safe operation of the unit. A non-contact online measurement system is advanced in this paper to improve the measurement accuracy and reduce the measurement time, so as to achieve the purpose of high-precision three-dimensional pipeline displacement real-time monitoring. The system used two cameras to capture the chessboard grid target fixed on the four pipelines, and the captured image is processed by deep learning neural network, so that the system could be used in the measurement of actual environment without the process of distortion and binocular correcting of cameras after calibration in the laboratory. While realizing the high-precision monitoring of the three-dimensional displacement of the four pipelines, the measurement operation was more concise and the degree of system intelligence is further improved. The experimental results showed that the standard deviation of the system is less than 0.24 mm, the displacement measurement error is less than 0.3%, and the single point measurement time is less than 0.1 s. It was a set of measurement system suitable for high-precision three-dimensional displacement real-time monitoring of four pipelines.

References

[1]  李光彪. 火电机组汽水管道系统安全性评价研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2017.
[2]  火力发电厂汽水管道与支吊架维护调整导则. 中国标准图书号: DLT616-2006[S]. 北京: 中国电力出版社, 2006.
[3]  Li, G.-B., Zhang, S.-J. and Liu, Y.-C. (2008) Influence of Hangercomponent Weight and Load Design Method to Spring Selection Andpipe Stress Analysis. Boiler Manufacturing, 73-80.
[4]  张鸿武, 冯楠楠, 陈阳. 锅炉高温过热器管失效分析[J]. 中国铸造装备与技术, 2021, 56(3): 69-72.
[5]  Ghosh, D., Roy, H. and Subramanian, C. (2021) Metallurgical Failure Investigation of Premature Failed Platen Water Wall Tube in a Thermal Power Plant Boil-er. Journal of Failure Analysis and Prevention, 21, 733-737.
https://doi.org/10.1007/s11668-021-01137-3
[6]  王峰, 许永强, 孙中元, 等. 1000MW超临界机组四大管道支吊架预防性维护[J]. 电工技术, 2020(14): 57-58+106.
[7]  王伟, 钟万里, 林介东, 等. 基于CCD图像的高温蒸汽管道位移测量系统研究[J]. 节能技术, 2016, 34(5): 406-411.
[8]  李文胜, 宋继湘, 樊绍胜, 王伟. 基于摄像视觉的锅炉蒸汽管道宏观位移在线测量方法[J]. 热能动力工程, 2016, 31(8): 87-92.
[9]  陈强. 基于双目立体视觉的三维重建[J]. 现代计算机(专业版), 2015(1): 66-69.
[10]  黄鹏程, 杨波, 万新军, 等. 基于双目视觉的多点三维振动测量系统[J]. 光学技术, 2018, 44(4): 448-452.
[11]  华希俊, 夏乐春, 高福学, 等. 带切向畸变的模型可视化摄像机标定[J]. 工程图学学报, 2009(3): 121-125.
[12]  华希俊, 夏乐春, 高福学, 等. 带切向畸变的模型可视化摄像机标定[J]. 工程图学学报, 2009(3): 121-125.
[13]  Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning Representations by Back-Propagating Errors. Nature, 323, 533-536.
https://doi.org/10.1038/323533a0
[14]  王嵘冰, 徐红艳, 李波, 等. BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展, 2018, 28(4): 31-35.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133