全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于IndRNN-LSTM模型的股票价格预测
Stock Price Prediction Based on Independently Recurrent Neural Network and Long Short-Term Memory Network

DOI: 10.12677/AAM.2022.111026, PP. 209-218

Keywords: 独立循环神经网络,长短期记忆网络,道琼斯指数
Independently Recurrent Neural Network
, Long Short-Term Memory Network, Dow Jones Industrial Average

Full-Text   Cite this paper   Add to My Lib

Abstract:

结合独立循环神经网络和长短期记忆网络建立IndRNN-LSTM模型,选取道琼斯指数的18个指标,对道琼斯指数的开盘价格进行预测。另外,分别采用CNN-LSTM、IndRNN、LSTM、SVM、BP和CNN神经网络模型对开盘价格进行预测,并将七种模型的预测结果进行比较,结果表明IndRNN-LSTM模型的预测精度较高,能更好地预测股票的走势。
IndRNN-LSTM model is established by combining independently recurrent neural network and long short-term memory network. This paper selects 18 indexes of Dow Jones index to predict the opening price of Dow Jones index. CNN-LSTM, IndRNN, SVM and LSTM neural network models are also used to predict the opening price, and the prediction results of the five models are compared. The results show that the IndRNN-LSTM model has high prediction accuracy and can better predict the stock trend.

References

[1]  周阳. 基于LSTM模型的上证综指价格预测研究[D]: [硕士学位论文]. 南京: 南京邮电大学, 2019.
[2]  赵浩博, 李锡祚. 基于卷积和循环神经网络模型融合的股票开盘价预测研究[J]. 智能计算机与应用, 2019, 9(6): 55-58+64.
[3]  钱赟. 基于主成分分析与序列到序列学习模型的股票收盘价格预测[D]: [硕士学位论文]. 上海: 上海师范大学, 2020.
[4]  王东, 王霄鹏, 杨川东. 一种基于主成分LSTM模型在股票预测中的研究[J]. 重庆理工大学学报(自然科学), 2021, 35(2): 282-288.
[5]  黄超斌, 程希明. 基于LSTM神经网络的股票价格预测研究[J]. 北京信息科技大学学报(自然科学版), 2021, 36(1): 79-83.
[6]  王玉堃. LSTM和GRU神经网络在股指高频数据预测中的研究[D]: [硕士学位论文]. 济南: 山东大学, 2020.
[7]  Li, S., Li, W., Cook, C., et al. (2018) Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 5457-5466.
https://doi.org/10.1109/CVPR.2018.00572

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133