|
基于非负矩阵分解方法的主要城市环境质量状况分析
|
Abstract:
根据水环境、大气环境、固体废物、声环境四方面的环境质量建立评价指标体系,利用非负矩阵分解方法对2020年全国31个主要城市的环境质量状况进行聚类分析评价。结果表明在2020年全国31个主要城市的环境质量状况中,环境质量状况在不同城市之间表现有差异,并且聚类结果呈现一定的空间分布特征。研究揭示了城市的环境质量状况与空间分布情况,能为城市生态环境状况发展建设提供参考。
Establish an evaluation index system based on the environmental quality of water environment, atmospheric environment, solid waste, and acoustic environment, and use the non-negative matrix decomposition method to perform cluster analysis and evaluation on the environmental quality of 31 major cities across the country in 2020. The results show that in the environmental quality status of 31 major cities across the country in 2020, the environmental quality status varies between different cities, and the clustering results show certain spatial distribution characteristics. The research reveals the environmental quality and spatial distribution of the city, which can provide a reference for the development and construction of the urban ecological environment.
[1] | 陈涛, 张越, 王玉阁, 李志英. 可持续发展视域下城市紧凑度与生态环境质量耦合协调关系研究——基于我国直辖市与省会城市的实证[J]. 生态经济, 2021, 37(10): 93-99+107. |
[2] | 李培, 王新, 柴发合, 王淑兰, 王锷一, 胡敏, 王瑞斌, 严刚, 任洪岩, 吴玉萍, 谢永明. 我国城市大气污染控制综合管理对策[J]. 环境与可持续发展, 2011, 36(5): 8-14. |
[3] | 卢敦, 张丽. 聚类分析与因子分析在天津港富营养化分析中的应用[J]. 数学的实践与认识, 2010, 40(11): 72-79. |
[4] | 黄恒君, 漆威. 海量半结构化数据采集、存储及分析——基于实时空气质量数据处理的实践[J]. 统计研究, 2014, 31(5): 10-16. |
[5] | 杨吉, 苏维词. 基于系统聚类分析的天河潭区域环境污染程度评价[J]. 环境工程, 2016, 34(8): 154-157+173. |
[6] | 陈军飞, 陈琳. 基于加权主成分距离聚类的江苏省环境质量评价[J]. 资源开发与市场, 2018, 34(10): 1383-1388. |
[7] | 黄恒君, 高海燕, 张梦瑶. 函数型聚类分析: 基于距离的一步法框架[J]. 数理统计与管理, 2019, 38(6): 986-995. |
[8] | 王宇辰. 非负矩阵分解算法综述[J]. 数字技术与应用, 2021, 39(2): 112-114. |
[9] | 高海燕, 黄恒君, 王宇辰. 基于非负矩阵分解的函数型聚类算法[J]. 统计研究, 2020, 37(8): 91-103. |
[10] | Paatero, P. and Tapper, U. (1994) Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics, 5, 111-126. https://doi.org/10.1002/env.3170050203 |
[11] | Lin, CJ. (2007) Projected Gradient Methods for Nonnegative Matrix Factorization. Neural Computation, 19, 2756-2779.
https://doi.org/10.1162/neco.2007.19.10.2756 |
[12] | Lee, D.D. and Seung, H.S. (1999) Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature, 6755, 788-791. https://doi.org/10.1038/44565 |
[13] | Hoyer, P.O. (2004) Non-Negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research, 5, 1457-1469. |