|
数据驱动的分布式鲁棒随机二次规划的收敛性分析
|
Abstract:
本文研究数据驱动的Wasserstein模糊集下分布式鲁棒随机二次规划的收敛性问题。首先,我们建立了目标函数的逐点Lipschitz性质。接着,当样本量趋于无穷大时,利用大数定律,Helly-Bray定理给出了分布式目标函数收敛于目标函数的期望值。最后,我们建立了分布式鲁棒随机二次规划收敛于通常的随机二次规划问题。
In this paper, we study the convergence problem of distributionally robust stochastic quadratic programming under the data-driven Wasserstein ambiguity sets. First, we establish the point-by-point Lipschitz property of the objective function. Then, when the sample size tends to infinity, using the law of large numbers, the Helly-Bray theorem derives the expectation of the distributionally objective function converges to the objective function. Finally, we establish that the distributionally robust stochastic quadratic programming converges to the general stochastic quadratic programming problem.
[1] | 骆建文, 鲁世杰. 随机规划逼近解的收敛性[J]. 浙江大学学报(理学版), 2000, 27(5): 493-497. |
[2] | 霍永亮, 刘三阳. 随机规划逼近问题最优解集的下半收敛性[J]. 数学进展, 2012, 41(6): 747-754. |
[3] | R?misch, W. and Schultz, R. (1991) Stability Analysis for Stochastic Programs. Annals of Operations Research, 30, 241-266. https://doi.org/10.1007/BF02204819 |
[4] | Klatte, D. (1994) On Quantitative Stability for Non-Isolated Minima. Control and Cybernetics, 23, 183-200. |
[5] | Schultz, R. (2000) Some Aspects of Stability in Stochastic Programming. Annals of Operations Research, 100, 55-84.
https://doi.org/10.1023/A:1019258932012 |
[6] | Ben-Tal, A. and Nemirovski, A. (1998) Robust Convex Optimization. Mathematics of Operations Research, 23, 769-805. https://doi.org/10.1287/moor.23.4.769 |
[7] | ElGhaoui, L. and Lebret, H. (1997) Robust Solutions to Least-Squares Problems with Uncertain Data. SIAM Journal on Matrix Analysis and Applications, 18, 1035-1064. https://doi.org/10.1137/S0895479896298130 |
[8] | Zhao, C.Y. and Guan, Y.P. (2018) Data-Driven Risk-Averse Stochastic Optimization with Wasserstein Metric. Operations Research Letters, 46, 262-267. https://doi.org/10.1137/S0895479896298130 |
[9] | Fournier, N. and Guillin, A. (2015) On the Rate of Convergence in Wasserstein Distance of the Empirical Measure. Probability Theory and Related Fields, 162, 707-738. https://doi.org/10.1137/S0895479896298130 |
[10] | Zhao, C.Y. (2014) Data-Driven Risk-Averse Stochastic Program and Renewable Energy Integration. University of Florida, Gainesville, FL. |
[11] | Esfahani, P.M. and Kuhn, D. (2018) Data-Driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations. Mathematical Programming, 171, 115-166.
https://doi.org/10.1007/s10107-017-1172-1 |