|
一类平面图中的彩虹匹配
|
Abstract:
对给定的边染色图 G,若图 G 的每条边的颜色都不同,则G是彩虹的。对给定的图 G 和 H,H 在G 上的 anti-Ramsey 数,记作 AR(G, H),表示图 G 中不包含任何同构千 H 的彩虹子图的最大边染色数。本文主要研究Tn中匹配的 anti-Ramsey 数。
We call an edge-colored graph G rainbow, if all of its edges have different colors. The anti-Ramsey number of the graph H in G, denoted by AR(G, H), is the maximum number of colors in an edge-coloring of G which does not contain any rainbow subgraph isomorphic to H. In this paper, we consider the anti-Ramsey number for matchings in planar graphs Tn.
[1] | Erd?os, P., Simonovits, M. and S′os, V.T. (1973) Anti-Ramsey Theorems. Colloquia Mathematica Societatis J′anos Bolyai, 10, 657-665. |
[2] | Li, X.L. and Xu, Z.X. (2009) The Rainbow Number of Matchings in Regular Bipartite Graphs. Applied Mathematics Letters, 22, 1525-1528. https://doi.org/10.1016/j.aml.2009.03.019 |
[3] | Schiermeyer, I. (2004) Rainbow Numbers for Matchings and Complete Graphs. Discrete Math- ematics, 286, 157-162. |
[4] | Jendrol/, S., Schiermeyer, I. and Tu, J.H. (2014) Rainbow Numbers for Matchings in Plane Triangulations. Discrete Mathematics, 331, 158-164. https://doi.org/10.1016/j.disc.2014.05.012 |
[5] | Qin, Z.M., Lan, Y.X., Shi, Y.T. and Yue, J. (2021) Exact Rainbow Numbers for Matchings in Plane Triangulations. Discrete Mathematics, 344, Article ID: 112301. https://doi.org/10.1016/j.disc.2021.112301 |