全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同温度下制备的椰壳生物炭对水中Cu(II)的吸附研究
Study on the Adsorption of Cu(II) in Water by Coconut Shell Biochar Prepared at Different Temperatures

DOI: 10.12677/AEP.2022.121004, PP. 27-37

Keywords: 椰壳,生物炭,Cu(II),吸附
Coconut Shell
, Biochar, Cu(II), Adsorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

化工业的快速兴起,使含有农药、油漆以及化肥等有害废水和废渣大量排放,导致环境中的铜污染进一步恶化。因此,要降低和消除环境中过量的金属铜,吸附是一种行之有效的技术手段。生物炭因其制备费用低,吸附性能好以及对环境友好等特点而被广泛研究使用。本实验以我国海南省来源广泛的椰壳作为原材料,分别在500℃、600℃和700℃条件下制备生物炭(分别记为T500、T600和T700)。利用三种温度制备的椰壳生物炭研究不同初始浓度、生物炭投加量、溶液初始pH值以及吸附时间等因素对水中Cu(II)的吸附特征。研究结论如下:1) 三种温度下制备的椰壳生物炭对水中Cu(II)都具有较好的吸附效果,在相同条件下,三种生物炭的吸附能力:T700 > T600 > T500。2) 在水中Cu(II)初始浓度为60 mg/L,投加量为0.2 g,pH为4,吸附时间为3 h时,T700的最大吸附量达到8.6833 mg/g。
With the rapid development of chemical industry, large amounts of harmful waste water and waste residue including pesticides, paint and chemical fertilizers are discharged, which leads to further deterioration of copper pollution in the environment. Therefore, adsorption is an effective technique to reduce and eliminate excess metal copper in the environment. Among them, because of its low preparation cost, good adsorption performance and environmental friendly and so on, biochar is widely studied and used. In this experiment, a wide range of coconut shells from Hainan Province was selected as raw material to prepare the biochar respectively at the temperature of 500?C, 600?C and 700?C (recorded as T500, T600 and T700). The effect of the initial concentration of the solution, the dosing of biochar, pH value and adsorption time factors on adsorption of Cu(II) in water by biochar was studied. Research conclusion shows that: 1) The coconut shell biochars prepared at the three temperatures all have good adsorption effect on Cu(II) in water. Under the same conditions, the adsorption capacity of the three biochars is: T700 > T600 > T500. 2) When the initial concentration of solution is 60 mg/L, the dosage is 0.2 g, pH is 4 and the adsorption time is 3 h, the maximum adsorption capacity of T700 is 8.6833 mg/g.

References

[1]  Li, L., Chen, X., Liu, X., et al. (2014) Removal of Cu from the Nickel Electrolysis Anolyte Using a Morphous MnS. Hydrometallurgy, 146, 149-153.
https://doi.org/10.1016/j.hydromet.2014.04.004
[2]  Tan, P., Sun, J., Hu, Y., et al. (2015) Adsorption of Cu2+ and Ni2+ from Aqueous Single Metal Solutions on Grapheme Oxide Membranes. Journal of Hazardous Materials, 297, 251-260.
https://doi.org/10.1016/j.jhazmat.2015.04.068
[3]  Xu, X., Cao, X., Zhao, L., et al. (2013) Removal of Cu, Zn, and Cd from Aqueous Solutions by the Dairy Mature-Derived Biochar. Environmental Science and Pollution Research (International), 20, 358-368.
https://doi.org/10.1007/s11356-012-0873-5
[4]  Xu, Z., Gao, G., Pan, B., et al. (2015) A New Combined Process for Efficient Removal of Cu(II) Organic Complexes from Wastewater: Fe(III) Displacement/UV Degradation Alkaline Precipitation. Water Research, 87, 378-384.
https://doi.org/10.1016/j.watres.2015.09.025
[5]  Mohan, D., Singh, P., Sarswat, A., et al. (2015) Lead Sorptive Removal Using Magnetic and Nonmagnetic Fast Pyrolysis Energy Cane Biochars. Journal of Colloid and Inter Face Science, 448, 238-250.
https://doi.org/10.1016/j.jcis.2014.12.030
[6]  Yuan, J.H., Xu, R.K. and Zhang, H. (2011) The Forms of Alkalis in Tlle Biochar Produced from Crop Residues at Different Temperatures. Bioresource Technology, 102, 3488-3497.
https://doi.org/10.1016/j.biortech.2010.11.018
[7]  Hatton, B.J. and Singh, B. (2010) Influence of Biochars on N2O Emission and Nitrogen Leaching from Two Contrasting Soils. Journal of Environmental Quality, 39, 1224-1235.
https://doi.org/10.2134/jeq2009.0138
[8]  Singh, B., Singh, B.P. and Cowie, A.L. (2010) Characterisation and Evaluation of Biochars for Their Application as a Soil Amendment. Australian Journal of Soil Research, 48, 516-525.
https://doi.org/10.1071/SR10058
[9]  Van Zwieten, L., Singh, B. and Joseph, S. (2009) Biochar and Emissions of Non-CO2 Greenhouse Gases from Soil. In: Lehmann, J.L. and Joseph, S., Eds., Biochar for Environmental Management, Science and Technology, Earthscan, London, 33-52.
[10]  Goldberg, E.D. (1985) Black Carbon in the Environment: Properties and Distribution. John Wiley Press, New York.
[11]  王瑞峰, 赵立欣, 沈玉君, 等. 生物炭制备及其对土壤理化性质影响的研究进展[J]. 中国农业科技导报, 2015, 17(2): 126-133.
[12]  王定美, 徐荣险, 秦冬星, 等. 水热炭化终温对污泥生物炭产量及特性的影响[J]. 生态环境学报, 2012, 21(10): 1775-1780.
[13]  罗煜, 赵丽欣, 孟海波, 等. 不同温度下热裂解芒草生物质炭的理化特性分析[J]. 农业工程学报, 2013, 29(13): 208-217.
[14]  胡菲菲, 何丕文. 不同热解温度制备的鸡粪生物炭对废水中磷的吸附[J]. 湖北农业科学, 2014, 53(8): 1774-1785.
[15]  张继义, 蒲丽君, 李根. 秸秆生物碳质吸附剂的制备及其吸附性能[J]. 农业工程学报, 2011, 27(S2): 104-109.
[16]  唐行灿, 陈金林, 李文庆. 生物炭对Cu2+的吸附特性及其影响因素. 安徽农业科学, 2014, 42(5): 1467-1470.
[17]  蒋艳艳. 生物炭吸附固定镉、铜效果的研究[D]: [硕士学位论文]. 武汉: 长江大学, 2014.
[18]  谢超然, 王兆炜, 朱俊民, 等. 核桃青皮生物炭对重金属铅、铜的吸附特性研究[J]. 环境科学学报, 2016, 36(4): 1190-1198.
[19]  Gong, R.M., Sun, Y.Z., Chen, J., et al. (2005) Effect of Chemical Modification on Dye Adsorption Capacity of Peanut Hull. Dyes Pigments, 67, 175-181.
https://doi.org/10.1016/j.dyepig.2004.12.003
[20]  Annadurai, G., Juang, R.S. and Lee, D.J. (2002) Use of Cellu-lose-Based Wastes for Adsorption of Dyes from Aqueous Solutions. Journal of Hazardous Materials, 92, 263-274.
https://doi.org/10.1016/S0304-3894(02)00017-1
[21]  Ferrero, F. (2007) Dye Removal by Low Cost Adsorbents: Hazel-Nut Shells in Comparison with Wood Sawdust. Journal of Hazardous Materials, 142, 144-152.
https://doi.org/10.1016/j.jhazmat.2006.07.072
[22]  Saito, Y., Mori, M., Shida, S., et al. (2000) Formaldehyde Adsorption and Desorption Properties of Wood-Based Charcoal. Journal of the Japan Wood Research Society, 46, 596-601.
[23]  刘进阁, 周震峰. 豆角秸秆生物炭对水中Cr(Ⅵ)吸附性能研究[J]. 环境科学与管理, 2013, 38(8): 161-165.
[24]  梁丽萍. 秸秆类生物吸附剂的制备及其对溶液中六价铬的吸附性能研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2011.
[25]  王国惠. 板栗壳对重金属Cr(VI)吸附性能的研究[J]. 环境工程学报, 2009, 3(5): 791-794.
[26]  丁春霞, 何紫君, 郑琛, 等. HDTMAB改性蒙脱石对二氯喹啉酸的吸附研究[J]. 农业环境科学学报, 2014, 33(9): 1755-1761.
[27]  Pellera, F.M., Giannis, A., Kalderis, D., et al. (2012) Adsorption of Cu(II) Ions from Aqueous Solutions on Biochars Prepared from Agricultural By-Products. Journal of Environmental Management, 96, 35-42.
https://doi.org/10.1016/j.jenvman.2011.10.010
[28]  李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb2+、Cu2+的吸附[J]. 农业环境科学学报, 2015, 34(5): 1001-1008.
[29]  马静. 天然植物材料作为吸附剂处理低浓度重金属废水的研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133