全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络药理学探讨鬼针草治疗血脂异常的作用机制
Discussion on the Mechanism of Bidens in Treatment of Dyslipidemia Based on Network Pharmacology

DOI: 10.12677/PI.2022.111005, PP. 35-45

Keywords: 鬼针草,血脂异常,网络药理学
Bidens
, Dyslipidemia, Network Pharmacology

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:基于网络药理学探讨鬼针草治疗血脂异常的有效活性成分及作用机制。方法:通过中药系统药理学数据库(traditional Chinese medicine systems pharmacology database and analysis platform, TCMSP)检索鬼针草有效成分及靶点;利用GeneCards和DisGeNET数据库获取血脂异常疾病靶点;应用Venny2.1.0导入鬼针草和血脂异常靶点获得交集基因靶点,将交集靶点导入STRING数据库构建鬼针草–血脂异常蛋白相互作用(PPI)网络;利用Cytoscape3.7.2软件绘制前10核心靶点图,用Tools工具对鬼针草–有效成分–共同靶点–血脂异常相互关系进行可视化分析;采用DAVID数据库进行基因本体论(gene ontology, GO)和京都基因与基因组百科全书(KEGG)通路富集分析,OmicShare Tools云工具绘制GO富集和KEGG通路高级气泡图。结果:共筛选鬼针草有效成分6个及靶点144个,血脂异常疾病靶点3846个,共同交集基因靶点119个;共靶点GO富集分析,共获得732条GO注释(P < 0.01),其中573条与生物过程有关、46条与细胞组分有关,113条与分子功能有关;共靶点KEGG通路分析,共获得113条KEGG信号通路(P < 0.01);根据P值大小筛选前20进行可视化。结论:鬼针草可能是通过AKT1、TNF、IL6等关键基因靶点,参与细胞对脂多糖的反应、基因表达的正调控、炎症反应等生物过程,经肿瘤坏死因子信号通路、HIF-1信号通路、Toll样受体信号通路等发挥治疗血脂异常及动脉粥样硬化心血管疾病(ASCVD)的作用。
Objective: To explore the effective active ingredients and mechanism of Bidens in the treatment of dyslipidemia based on network pharmacology. Methods: Search the active ingredients and targets of Bidens through the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP); Use GeneCards and DisGeNET databases to obtain dyslipidemia disease targets; Use Venny2.1.0 to import Bidens and dyslipidemia targets to obtain the intersection gene targets, and import the intersection targets into the STRING database to construct the Bidens-Dyslipidemia Protein Interaction (PPI) network; Use Cytoscape3.7.2 software to draw the top 10 core target map, and use Tools to visually analyze the relationship between Bidens-active ingredients-common targets-dyslipidemia; The DAVID database was used for gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis, OmicShare Tools cloud tool draws GO enrichment and KEGG pathway high-level bubble maps. Results: A total of 6 active ingredients and 144 targets of Bidens were screened, 3846 targets for dyslipidemia diseases, and 119 common genetic targets were intersected; Co-targeted GO enrichment analysis, 732 GO annotations (P < 0.01) were obtained, of which 573 were related to biological processes, 46 were related to cell components, and 113 were related to molecular functions; Co-target KEGG pathway analysis, a total of 113 KEGG signal pathways were obtained (P < 0.01); Filter the top 20 according to the size of the P value for visualization. Conclusion: Bidens may be through AKT1, TNF, IL6, etc. key gene targets, to participate in cellular response to lipopolysaccharide, positive regulation of gene expression, inflammatory response, etc. biological processes,

References

[1]  Gister?, A. and Ketelhuth, D.F.J. (2018) Li-pid-Driven Immunometabolic Responses in Atherosclerosis. Current Opinion in Lipidology, 29, 375-380.
https://doi.org/10.1097/MOL.0000000000000540
[2]  Kopin, L. and Lowenstein, C. (2017) Dyslipidemia. Annals of Internal Medicine, 167, ITC81-ITC96.
https://doi.org/10.7326/AITC201712050
[3]  Zhang, M., Deng, Q., Wang, L., et al. (2018) Prevalence of Dyslipidemia and Achievement of Low-Density Lipoprotein Cholesterol Targets in Chinese Adults: A Nationally Representative Survey of 163,641 Adults. International Journal of Cardiology, 260, 196-203.
https://doi.org/10.1016/j.ijcard.2017.12.069
[4]  中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545.
[5]  赵静, 王育苗. 2016-2020年血脂异常管理研究进展与思考[J]. 中国实用内科杂志, 2021, 41(8): 729-734.
[6]  王碧晴, 赵俊男, 张颖, 等. 鬼针草的药理作用研究进展[J]. 中医药导报, 2019, 25(18): 100-103+107.
[7]  Zhang, R., Zhu, X., Bai, H., et al. (2019) Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment. Frontiers in Pharmacology, 10, 123.
https://doi.org/10.3389/fphar.2019.00123
[8]  Ru, J., Li, P., Wang, J., et al. (2014) TCMSP: A Database of Sys-tems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, 13.
https://doi.org/10.1186/1758-2946-6-13
[9]  Roth, G.A., Mensah, G.A. and Fuster, V. (2020) The Global Burden of Cardiovascular Diseases and Risks: A Compass for Global Action. Journal of the American College of Cardiology, 76, 2980-2981.
https://doi.org/10.1016/j.jacc.2020.11.021
[10]  Karantas, I.D., Okur, M.E., Okur, N.ü., et al. (2021) Dyslipidemia Management in 2020: An Update on Diagnosis and Therapeutic Perspectives. Endocrine, Metabolic & Immune Dis-orders—Drug Targets, 21, 815-834.
https://doi.org/10.2174/1871530320666200810144004
[11]  邹振武, 李德忠, 彭绪东, 等. 单味中药鬼针草颗粒治疗高脂血症的疗效及其对血清MMP-9、TIMP-1水平的影响[J]. 心血管康复医学杂志, 2019, 28(5): 661-665.
[12]  范琦琦, 张雪, 高梦迪, 等. 鬼针草降血脂有效部位的筛选及其指纹图谱的测定[J]. 当代化工, 2020, 49(4): 581-583+587.
[13]  Rezaei-Sadabady, R., Eidi, A., Zarghami, N., et al. (2016) Intracellular ROS Protection Efficiency and Free Radical-Scavenging Activity of Quercetin and Quercetin-Encapsulated Liposomes. Artificial Cells, Nano-medicine and Biotechnology, 44, 128-134.
https://doi.org/10.3109/21691401.2014.926456
[14]  Xu, D., Hu, M.J., Wang, Y.Q., et al. (2019) Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules, 24, 1123.
https://doi.org/10.3390/molecules24061123
[15]  Lee, S.M., Moon, J., Cho, Y., et al. (2013) Quercetin Up-Regulates Expressions of Peroxisome Proliferator-Activated Receptor γ, Liver X Receptor α, and ATP Binding Cassette Transporter A1 Genes and Increases Cholesterol Efflux in Human Macrophage Cell Line. Nutrition Research, 33, 136-143.
https://doi.org/10.1016/j.nutres.2012.11.010
[16]  Alhajri, N., Khursheed, R., Ali, M.T., et al. (2021) Cardiovascular Health and the Intestinal Microbial Ecosystem: The Impact of Cardiovascular Therapies on the Gut Microbiota. Microorganisms, 9, 2013.
https://doi.org/10.3390/microorganisms9102013
[17]  Shi, T., Bian, X., Yao, Z., et al. (2020) Quercetin Improves Gut Dysbiosis in Antibiotic-Treated Mice. Food & Function, 11, 8003-8013.
https://doi.org/10.1039/D0FO01439G
[18]  Francisco, V., Figueirinha, A., Costa, G., et al. (2016) The Flavone Luteolin Inhibits Liver X Receptor Activation. Journal of Natural Products, 79, 1423-1428.
https://doi.org/10.1021/acs.jnatprod.6b00146
[19]  Boeing, T., de Souza, P., Speca, S., et al. (2020) Luteolin Pre-vents Irinotecan-Induced Intestinal Mucositis in Mice through Antioxidant and Anti-Inflammatory Properties. British Journal of Pharmacology, 177, 2393-2408.
https://doi.org/10.1111/bph.14987
[20]  Franza, L., Carusi, V., Nucera, E., et al. (2021) Luteolin, Inflammation and Cancer: Special Emphasis on Gut Microbiota. Biofactors, 47, 181-189.
https://doi.org/10.1002/biof.1710
[21]  Ding, X., Zheng, L., Yang, B., et al. (2019) Luteolin Attenuates Athero-sclerosis via Modulating Signal Transducer and Activator of Transcription 3-Mediated Inflammatory Response. Drug Design, Development and Therapy, 13, 3899-3911.
https://doi.org/10.2147/DDDT.S207185
[22]  Kwon, E.Y., Kim, S.Y. and Choi, M.S. (2018) Luteolin-Enriched Ar-tichoke Leaf Extract Alleviates the Metabolic Syndrome in Mice with High-Fat Diet-Induced Obesity. Nutrients, 10, 979.
https://doi.org/10.3390/nu10080979
[23]  Babaev, V.R., Ding, L., Zhang, Y., et al. (2019) Loss of 2 Akt (Protein Kinase B) Isoforms in Hematopoietic Cells Diminished Monocyte and Macrophage Survival and Reduces Ath-erosclerosis in Ldl Receptor-Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 156-169.
https://doi.org/10.1161/ATVBAHA.118.312206
[24]  Cortez-Cooper, M., Meaders, E., Stallings, J., et al. (2013) Soluble TNF and IL-6 Receptors: Indicators of Vascular Health in Women without Cardiovascular Disease. Vascular Medicine, 18, 282-289.
https://doi.org/10.1177/1358863X13508336
[25]  Pan, Q., Hui, D. and Hu, C. (2021) A Variant of IL1B Is Asso-ciated with the Risk and Blood Lipid Levels of Myocardial Infarction in Eastern Chinese Individuals. Immunological Investigations, 6, 1-8.
https://doi.org/10.1080/08820139.2021.1914081
[26]  Van Quickelberghe, E., De Sutter, D., van Loo, G., et al. (2018) A Protein-Protein Interaction Map of the TNF-Induced NF-κB Signal Transduction Pathway. Scientific Data, 5, Article ID: 180289.
https://doi.org/10.1038/sdata.2018.289
[27]  Narayanan, K.B. and Park, H.H. (2015) Toll/Interleukin-1 Receptor (TIR) Domain-Mediated Cellular Signaling Pathways. Apoptosis, 20, 196-209.
https://doi.org/10.1007/s10495-014-1073-1
[28]  MoghimpourBijani, F., Vallejo, J.G. and Rezaei, N. (2012) Toll-Like Receptor Signaling Pathways in Cardiovascular Diseases: Challenges and Opportunities. International Reviews of Immunology, 31, 379-395.
https://doi.org/10.3109/08830185.2012.706761
[29]  Kwon, E.Y. and Choi, M.S. (2018) Luteolin Targets the Toll-Like Receptor Signaling Pathway in Prevention of Hepatic and Adipocyte Fibrosis and Insulin Resistance in Di-et-Induced Obese Mice. Nutrients, 10, 1415.
https://doi.org/10.3390/nu10101415
[30]  Zhang, Z., Yao, L., Yang, J., et al. (2018) PI3K/Akt and HIF-1 Signaling Pathway in Hypoxia-Ischemia (Review). Molecular Medicine Reports, 18, 3547-3554.
https://doi.org/10.3892/mmr.2018.9375
[31]  Wang, Y., Yu, H. and He, J. (2020) Role of Dyslipidemia in Accelerating Inflammation, Autoimmunity, and Atherosclerosis in Systemic Lupus Erythematosus and Other Autoimmune Diseases. Discovery Medicine, 30, 49-56.
[32]  Yu, Z.P., Yu, H.Q., Li, J., et al. (2020) Troxerutin Attenuates Oxy-gen-Glucose Deprivation and Reoxygenation-Induced Oxidative Stress and Inflammation by Enhancing the PI3K/AKT/HIF-1α Signaling Pathway in H9C2 Cardiomyocytes. Molecular Medicine Reports, 22, 1351-1361.
https://doi.org/10.3892/mmr.2020.11207

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133