全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于分布式光纤应变传感和深度学习的混凝土缺陷预测方法研究
Research on Concrete Defect Prediction Method Based on Distributed Optical Fiber Strain Sensing and Deep Learning

DOI: 10.12677/JSTA.2022.101008, PP. 60-66

Keywords: 混凝土缺陷预测,深度学习,分布式光纤应变传感
Concrete Defect Prediction
, Deep Learning, Distributed Optical Fiber Strain Sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对钢筋混凝土结构健康监测,提出了一种基于分布式光纤应变传感的缺陷预测方法。通过构建通用人工神经网络,对缺陷样本进行深度学习训练,可自动实现特征提取和分类识别,避免了人工建模方法的复杂性。通过开展缺陷模拟实验,对缺陷预测方法准确性进行了验证。实验表明,经过深度学习的分类识别模型可实现缺陷样本准确预测,准确率达到99%以上。
A defect prediction method based on distributed optical fiber strain sensing is proposed for the health monitoring of reinforced concrete structures. By constructing a general artificial neural network and performing deep learning training on defective samples, feature extraction and classification and recognition can be automatically realized, avoiding the complexity of manual modeling methods. By carrying out defect simulation experiments, the accuracy of the defect prediction method was verified. Experiments show that the classification and recognition model after deep learning can achieve accurate prediction of defect samples, with an accuracy rate of over 99%.

References

[1]  吴永红, 朱莎, 许蔚, 张海明. 分布式光纤裂缝传感工程应用研究进展[J]. 激光与光电子学进展, 2018, 55(9): 090002
[2]  Wu, Y.H., Zhu, S., Xu, W. and Zhang, H.M. (2018) Progress in Distributed Optical Fiber Crack Sensing Engineering. Laser & Optoelectronics Progress, 55, 090002.
https://doi.org/10.3788/LOP55.090002
[3]  Yao, Y., Tung, S.T.E. and Glisic, B. (2014) Crack Detection and Characterization Techniques: An Overview. Structural Control and Health Monitoring, 21, 1387-1413.
https://doi.org/10.1002/stc.1655
[4]  Das, S. and Saha, P. (2018) A Review of Some Advanced Sensors Used for Health Diagnosis of Civil Engineering Structures. Measurement, 129, 68-90.
https://doi.org/10.1016/j.measurement.2018.07.008
[5]  严国萍, 陈禹, 李雨冲, 闫昭帆. 基于一维堆叠卷积自编码器的分布式应变裂缝检测[J]. 计算机系统应用, 2020, 29(1): 144-150.
[6]  Yan, G.P., Chen, Y., Li, Y.C. and Yan, Z.F. (2020) Distributed Strain Crack Detection Based on One-Dimensional Stacked Convolutional Autoencoder. Computer Systems and Applications, 29, 144-150.
[7]  Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.R. (2012) Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors. Computer Science.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133