全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

渐缩后缘开缝喷嘴引射器性能分析
Analysis of Notched Ejector Performance

DOI: 10.12677/ME.2022.101009, PP. 64-76

Keywords: 引射器,后缘开缝喷嘴,引射效率,流向涡
Ejector
, Notched Ejector, Entrainment Efficiency, Steam-Wise Vortex

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立了三维引射器物理模型,结合计算软件,对后缘开缝渐缩喷嘴对引射器效率的影响进行了研究。通过控制变量法,将开缝喷嘴引射器性能与普通喷嘴引射器进行了对比,分别分析了开缝的缝数、缝长、缝宽对引射器的引射效率的影响,发现适当的缝参数会使喷嘴出口形成流向涡,流向涡有助于卷吸引射流体,提高引射器的引射效率,流向涡强度越大,持续距离越长,则引射效率越高;缝数、缝长、缝宽皆存在最佳值,使引射器性能达到最佳;相比于普通喷嘴,在本文所研究的参数范围内,引射比最多提高了40.8%,引射流体压力喷嘴出口压力之差最多下降了25.3%。
The three-dimensional model of the ejector was established. The influence of the notched nozzle on the ejector efficiency was analyzed by using the calculation software. Compared with the ordinary ejector, the effect of the number, length and width of the slit on the notched ejector performance was respectively analyzed by variable control. The results showed that suitable slit caused steam-wise vortex around the nozzle exit. The steam-wise vortex can contribute to the suction of ejection fluid and thus improve the entrainment efficiency. The vortex with larger strength and a longer distance span results in higher efficiency. There are optimum values for the number of seams, the length of the seams and the width of the seams, which make the performance of the ejector reach the best. In the parameter range studied in this paper, compared with ordinary nozzles, the entrainment ratio increased by 40.8% at most, and the outlet pressure difference between the ejection fluid and nozzle outlet pressure decreased by 25.3% at most.

References

[1]  George, E. (1976) Optimum Performance for a Single-Stage Gaseous Ejector. AIAA Journal, 14, 1292-1296.
https://doi.org/10.2514/3.61462
[2]  赵静野, 孙厚钧, 高军. 引射器基本工作原理及其应用[J]. 北京建筑工程学院学报, 2001(3): 12-15.
[3]  廖达雄. 引射器性能优化和增强混合方法研究[D]: [硕士学位论文]. 西安: 西北工业大学, 2003: 2-9.
[4]  徐海涛. 蒸汽喷射器的理论及数值研究[D]: [硕士学位论文]. 南京: 南京工业大学, 2003: 69-85.
[5]  姜正良, 吴万敏. 气体引射器的一维流动特性计算及优化设计. 空气动力学学报, 1995, 13(4): 481-485.
[6]  Eames, I.W., Aphornratana, S. and Haider, H. (1995) A Theoretical and Experimental Study of a Small-Scale Steam Jet Refrigerator. International Journal of Refrigeration, 18, 378-386.
https://doi.org/10.1016/0140-7007(95)98160-M
[7]  张霄雷. 低压气井井口喷射引流工具试制[D]: [硕士学位论文]. 成都: 西南石油大学, 2014: 32-52.
[8]  Chang, Y.J. (2000) Enhancement of a Steamjet Refrigerator Using a Novel Application of the Petal Nozzle. Experimental Thermal and Fluid Science, 22, 203-211.
https://doi.org/10.1016/S0894-1777(00)00028-5
[9]  Yan, J.J., Chong, D.T. and Wu, X.Z. (2010) Effect of Swirling Vanes on Performance of Steam-Water Jet Injector. Applied Thermal Engineering, 30, 623-630.
https://doi.org/10.1016/j.applthermaleng.2009.11.007
[10]  Varga, S., Oliveira, A.C. and Diaconu, B. (2009) Influence of Geometrical Factors on Steam Ejector Performance: A Numerical Assessment. International Journal of Refrigeration, 32, 1694-1701.
https://doi.org/10.1016/j.ijrefrig.2009.05.009
[11]  Yang, X., Long, X. and Yao, X. (2012) Numerical Investigation on the Mixing Process in a Steam Ejector with Different Nozzle Structures. International Journal of Thermal Sciences, 56, 95-106.
https://doi.org/10.1016/j.ijthermalsci.2012.01.021
[12]  屈晓航, 田茂诚, 罗林聪, 冷学礼. 波纹状喷嘴蒸汽引射器性能分析[J]. 中国电机工程学报, 2014, 34(35): 6255-6262.
[13]  刘化勇. 超声速引射器的数值模拟方法及其引射特性研究[D]: [博士学位论文]. 绵阳: 中国空气动力研究与发展中心, 2009, 133-143.
[14]  刘晓刚. 经典引射器与双射流引射器的数值模拟对比研究[J]. 上海煤气, 2015(2): 20-27.
[15]  李成明. 多引射旋转预混燃烧器文丘力引射器的数值模拟和实验研究[D]: [硕士学位论文]. 杭州: 杭州电子科技大学, 2015: 19-22.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133