|
Applied Physics 2022
绝缘体上硅波导质量对马赫–泽德尔干涉仪光学性能的影响
|
Abstract:
SOI波导被公认为光子集成电路(PIC)最有前途的平台,本文研究了SOI波导马赫–泽德尔干涉仪(MZI)型2 × 2-光开关光学性能对波导加工质量的依赖性,建立了理论模型。进而,系统模拟了波导侧壁粗糙度(SWR)对芯片上光损耗(OCL)的影响,分析了脊宽误差(RWE)对器件输出端口的串扰(XT)效应。结果表明,对于芯层厚度为2.0 μm和脊宽为2.0 μm的SOI波导,MZI型器件的光输出性能的两个依赖性:OCL/SW = 0.5 dB/nm,XT/RWE = 1.2 dB/nm,实验结果与此结果一致。因此,本项成果可为MZI-PIC器件的设计提供数据基础。
Due to the numerous achievements in the research and development of silicon-on-insulator (SOI) waveguides and some functional devices, SOI waveguide is envisaged to be the most promising platform in photonic integrated circuits (PIC). This article systematically investigates the dependences of optical performance of Mach-Zehnder interferometer (MZI) based 2 × 2 optical switch on the fabrication quality of waveguide, leading to a theoretical model. Then, systematically simulates the impact of SWR on the OCL and the effect of RWE on the XT. The results show that for a 2.0 μm wide rib waveguide on a 2.0 μm thick silicon film, the output performance of MZI based device has the dependence as OCL/SWR = 0.5 dB/cm and XT/RWE = 1.2 dB/cm. Finally, the experimental results agree with the above simulations.
[1] | Doerr, C.R. and Okamoto, K. (2008) Planar Lightwave Circuits in Fiber-Optic Communications. In: Kaminow, I.P., Li, T. and Willner, A.E., Eds., Optical Fiber Telecommunications VA, 5th Edition, Academic Press, Cambridge, MA, 269-341. https://doi.org/10.1016/B978-0-12-374171-4.00009-5 |
[2] | Murphy, E.J. (1999) Integrated Optical Circuits and Components Design and Applications. |
[3] | Chrostowski, L. and Hochberg, M. (2015) Silicon Photonics Design: From Devices to Systems. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781316084168 |
[4] | Orcutt, J.S., Moss, B., Sun, C., et al. (2012) Open Foundry Platform for High-Performance Electronic-Photonic Integration. Optics Express, 20, 12222-12232. https://doi.org/10.1364/OE.20.012222 |
[5] | Dumon, P., Bogaerts, W., Wiaux, V., et al. (2004) Low-Loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography. IEEE Photonics Technology Letters, 16, 1328-1330. https://doi.org/10.1109/LPT.2004.826025 |
[6] | Tsuchizawa, T., Yamada, K., Fukuda, H., et al. (2005) Microphotonics Devices Based on Silicon Microfabrication Technology. IEEE Journal of Selected Topics in Quantum Electronics, 11, 232-240.
https://doi.org/10.1109/JSTQE.2004.841479 |
[7] | Marcuse, D. (2014) Radiation Losses of Dielectric Waveguides in Terms of the Power Spectrum of the Wall Distortion Function. The Bell System Technical Journal, 48, 3233-3242. https://doi.org/10.1002/j.1538-7305.1969.tb01744.x |
[8] | Payne, F.P. and Lacey, J. (1994) A Theoretical Analysis of Scattering Loss from Planar Optical Waveguides. Optical and Quantum Electronics, 26, 977-986. https://doi.org/10.1007/BF00708339 |
[9] | Barwicz, T. and Haus, H.A. (2005) Three-Dimensional Analysis of Scattering Losses Due to Sidewall Roughness in Microphotonic Waveguides. Journal of Lightwave Technology, 23, 2719-2732.
https://doi.org/10.1109/JLT.2005.850816 |
[10] | Poulton, C.G., Koos, C., Fujii, M., et al. (2006) Radiation Modes and Roughness Loss in High Index-Contrast Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 12, 1306-1321.
https://doi.org/10.1109/JSTQE.2006.881648 |
[11] | Shang, H.P., Sun, D.G., et al. (2020) Investigation for Sidewall Roughness Caused Optical Scatting Loss of Silicon-on-Insulator Waveguides with Confocal Laser Scanning Microscopy. Coatings, 10, Article 236.
https://doi.org/10.3390/coatings10030236 |
[12] | Sun, D.G., Hu, Z.M., Abdule-Majid, S., Vandusen, R., Zheng, Z., Hasan, I., Tarr, N.G., Bidnyk, S. and Hall, T.J. (2011) Limitation Factor Analysis for Silicon-on-Insulator Waveguide Mack-Zehnder Interference Based Electrooptic Switches. Journal of Lightwave Technology, 29, 2593-2600. https://doi.org/10.1109/JLT.2011.2161573 |
[13] | Papadimitriou, G.I., Papazoglou, C. and Pomportsis, A.S. (2003) Optical Switching: Switch Fabrics, Techniques, and Architectures. Journal of Lightwave Technology, 21, 384-405. https://doi.org/10.1109/JLT.2003.808766 |
[14] | Nagai, S., Morishima, G., Inayoshi, H., et al. (2002) Multimode In-terference Photonic Switches (MIPS). Journal of Lightwave Technology, 20, 675-681. https://doi.org/10.1109/50.996588 |
[15] | Sun, D.G., Zha, Y., Liu, T., et al. (2007) Demonstration for Rearrangeable Nonblocking 8 × 8 Matrix Optical Switches Based on Extended Banyan Networks. Optics Express, 15, 9347-9356. https://doi.org/10.1364/OE.15.009347 |
[16] | Van Campenhout, J., Green, W.M., Assefa, S. and Vlasov, Y.A. (2009) Low-Power, 2 × 2 Silicon Electro-Optic Switch with 110-nm Bandwidth for Broadband Reconfigurable Optical Net-works. Optics Express, 17, 24020-24029.
https://doi.org/10.1364/OE.17.024020 |
[17] | Soref, R. (2017) Design of Low-Energy On-Chip Electro-Optical 1 × M Wavelength-Selective Switches. Photonics Research, 5, 340-345. https://doi.org/10.1364/PRJ.5.000340 |
[18] | Cheng, Q., Bahadori, M., Glick, M., et al. (2018) Recent Advances in Optical Technologies for Data Centers: A Review. Optica, 5, 1354-1370. https://doi.org/10.1364/OPTICA.5.001354 |