|
Applied Physics 2022
三维燃料组件流阻数值计算研究
|
Abstract:
燃料组件的阻力特性影响堆芯不同类型组件的流量分配,对堆芯设计的影响不可忽视。为得到更为精确的燃料组件流阻特性并获得对应阻力系数,本文采用分段计算方法针对两种工质条件下的燃料组件进行了单通道三维数值模拟研究。结果表明:不同工质下,随着进口速度上升,各计算域局部压降及总压降均增大;不同工质下,对于三种形式的底板阻力系数D,四孔底板最小,圆孔底板最大,Phi孔底板介于前两者之间。最后还获得了工质分别为水和空气时燃料组件区和不同形式底板区的阻力系数,为稳态多孔介质模型中计算表征多孔介质影响的源项S提供了参考,对燃料组件通道的三维数值模拟提供了指导意义。
The flow resistance characteristics of fuel assemblies affect the flow flux distribution of the different types of assemblies in the core, and its influence on the core design cannot be ignored. In order to obtain more accurate flow resistance characteristics and corresponding resistance coefficient of fuel assemblies, a single channel three-dimensional numerical simulation of fuel assemblies under two working fluids is carried out by using the domain division technique. The results show that with the increase of flow velocity of the inlet, the local pressure drop and total pressure drop in each calculation domain increase. Under different working fluids, for the three types of bottom plate resistance coefficient D, four holes bottom plate is the smallest, round hole bottom plate is the largest, and Phi hole bottom plate is between the first two. Meanwhile, the resistance coefficients of the fuel assembly area and different types of bottom plate areas are obtained when the working fluids are water and air respectively, which provides a reference for calculating the source term S representing the influence of porous media in the steady-state porous media model and provides a guiding significance for the three-dimensional numerical simulation of fuel assembly channels.
[1] | Holloway, M.V., Mcclusky, H.L., Beasley, D.E., et al. (2003) The Effect of Support Grid Features on Local, Single-Phase Heat Transfer Measurements in Rod Bundles. Proceedings of the ASME 2003 Heat Transfer Summer Conference, American Society of Mechanical Engineers, 547-560. https://doi.org/10.1115/HT2003-47433 |
[2] | Holloway, M.V., Beasley, D.E., Conner, M.E., et al. (2008) Single-Phase Convective Heat Transfer in Rod Bundles. Nuclear Engineering & Design, 238, 848-858. https://doi.org/10.1016/j.nucengdes.2007.08.003 |
[3] | Govindha Rasu, N. (2014) Thermal Hydraulic Effect of Porous Blockage in Fuel Subassembly of Sodium Cooled Fast Reactor. Annals of Nuclear Energy, 70, 612-616. https://doi.org/10.1016/j.anucene.2014.01.045 |
[4] | Govindha Rasu, N. (2014) Simultaneous Development of Flow and Temperature Fields in Wire-Wrapped Fuel Pin Bundles of Sodium Cooled Fast Reactor. Nuclear Engineering and Design, 267, 44-60.
https://doi.org/10.1016/j.nucengdes.2013.11.066 |
[5] | 李继威, 干富军, 郑轶雄, 张朝柱, 朱丽兵, 顾汉洋. 燃料组件管座压降试验研究[J]. 动力工程学报, 2016, 36(3): 242-246. |
[6] | 李勇, 吕科锋, 陈刘利, 高胜, 黄群英. 铅基研究堆燃料组件阻力特性模拟实验与分析[J]. 核安全, 2017, 16(1): 70-81. |
[7] | 杜语聪, 丁常富, 薛新强. 低雷诺数绕丝组件摩擦阻力研究[J]. 华北电力大学学报(自然科学版), 2021, 48(6): 119-126. |
[8] | 晁嫣萌, 杨立新, 张玉相, 等. 湍流模型对5×5格架棒束通道流动传热数值模拟影响分析[J]. 原子能科学技术, 2014, 48(10): 1782-1789. |
[9] | 晁嫣萌. 定位格架对燃料组件流动传热特性影响的数值模拟研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2015. |
[10] | Péniguel, C., Rupp, I., Juhel, J.P., et al. (2009) Three Dimensional Conjugated Heat Transfer Analysis in Sodium Fast Reactor Wire-Wrapped Fuel Assembly. Proceedings of ICAPP’09, Tokyo, 9-311. |
[11] | 魏宗岚, 杜思佳, 王啸宇, 吴广皓, 刘松涛, 张渝. 基于CFD的燃料组件上管座阻力特性数值模拟研究[J]. 核动力工程, 2017, 38(S2): 29-33. |
[12] | 杨红义, 周志伟, 林超, 李淞, 王予烨. 堆芯燃料组件流阻特性模块式与整体式三维数值模拟方案比较[J]. 原子能科学技术, 2020, 54(5): 908-915. |
[13] | Navarro, M.A. and Santos, A.A.C. (2011) Evaluation of a Numeric Procedure for Flow Simulation of a 5×5 PWR Rod Bundle with a Mixing Vane Spacer. Progress in Nuclear Energy, 53, 1190-1196.
https://doi.org/10.1016/j.pnucene.2011.08.002 |
[14] | Lindgren, E.R. and Durbin, S.G. (2013) Laminar Hydraulic Analysis of a Commercial Pressurized Water Reactor Fuel Assembly. US Nuclear Regulatory Commission, Washington DC. |