全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三元数字集的自相似测度的谱性性质
Spectrality of Self-Similar Measures with Three Element Digit Sets

DOI: 10.12677/PM.2022.121026, PP. 218-232

Keywords: 自相似测度,谱测度,谱,Fourier 变换
Self-Similar Measure
, Spectral Measure, Spectrum, Fourier Transform

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fu和Wen证明了压缩比为实数ρ和有界三元整数字集列Dn={0, an,bn}??生成的无穷Bernoulli 卷积测度是谱测度的充要条件.本文研究由压缩比为实数ρ和三元实数字集D定义的迭代函数系统生成的自相似测度的谱性质, 我们证明该测度是谱测度当且仅当ρ?1是以3为因子的非零整数且存在非零实数a, 使得a(D?α)模3同余集合{0,1,2}, 其中α∈D 。
Fu and Wen prove that the convolution of the infinite Bernoulli measure generated by the compression ratio of real numbers ρ and the sequence of bounded three-element integers Dn={0, an,bn}?? is a sufficient and necessary condition for spectral measure. In this paper we study the spectrality of the self-similar measure generated by the iterative function system defined by the compression ratio of real numbers ρ and the set of three-element real digits D . We prove that the measure is spectral if and only if ρ?1 is a non-zero integer with a factor of? 3 and a(D?α) is congruence with {0,1,2} under (mod 3) for some a, where α∈D.

References

[1]  An, L.X. and He, X.G. (2014) A Class of Spectral Moran Measures. Journal of Functional Analysis, 266, 343-354.
https://doi.org/10.1016/j.jfa.2013.08.031
[2]  Dai, X.R., He, X.G. and Lai, C.K. (2013) Spectral Property of Cantor Measures with Consecutive Digits. Advances in Mathematics, 242, 187-208.
https://doi.org/10.1016/j.aim.2013.04.016
[3]  Dai, X.R., He, X.G. and Lau, K.S. (2014) On Spectral N-Bernoulli Measures. Advances in Mathematics, 259, 511-531.
https://doi.org/10.1016/j.aim.2014.03.026
[4]  Deng, Q.R. (2014) Spectrality of One Dimensional Self-Similar Measures with Consecutive Digits. Journal of Mathematical Analysis and Applications, 409, 331-346.
https://doi.org/10.1016/j.jmaa.2013.07.046
[5]  Dutkay, D., Haussermann, J. and Lai, C.K. (2019) Hadamard Triples Generate Self-Affine Spectral Measures. Transactions of the American Mathematical Society, 371, 1439-1481.
https://doi.org/10.1090/tran/7325
[6]  Fu, Y.S. and Wen, Z.X. (2017) Spectrality of Infinite Convolutions with Three-Element Digit Sets. Monatshefte fu¨r Mathematik, 183, 465-485.
https://doi.org/10.1007/s00605-017-1026-1
[7]  Fuglede, B. (1974) Commuting Self-Adjoint Partial Differential Operators and a Group Theoretic Problem. Journal of Functional Analysis, 16, 101-121.
https://doi.org/10.1016/0022-1236(74)90072-X
[8]  He, L. and He, X.G. (2017) On the Fourier Orthonormal Bases of Cantor-Moran Measures. Journal of Functional Analysis, 272, 1980-2004.
https://doi.org/10.1016/j.jfa.2016.09.021
[9]  Jorgensen, P.E.T. and Pedersen, S. (1998) Dense Analytic Subspaces in Fractal L2-Spaces. Journal d’Analyse Math′ematique, 75, 185-228.
https://doi.org/10.1007/BF02788699
[10]  Kolountzakis, M.N. and Matolcsi, M. (2004) Complex Hadamard Matrices and the Spectral Set Conjecture. Collectanea Mathematica, 57, 281-291.
[11]  Kolountzakis, M.N. and Matolcsi, M. (2006) Tiles with No Spectra. Forum Mathematicum, 18, 519-528.
https://doi.org/10.1515/FORUM.2006.026
[12]  Li, J.L. (2011) Spectra of a Class of Self-Affine Measures. Journal of Functional Analysis, 260, 1086-1095.
https://doi.org/10.1016/j.jfa.2010.12.001
[13]  Shi, R. (2019) Spectrality of a Class of Cantor-Moran Measures. Journal of Functional Analysis, 276, 3767-3794.
https://doi.org/10.1016/j.jfa.2018.10.005
[14]  Tao, T. (2004) Fuglede’s Conjecture Is False in 5 and Higher Dimensions. Mathematical Research Letters, 11, 251-258.
https://doi.org/10.4310/MRL.2004.v11.n2.a8
[15]  Wang, Z.Y., Dong, X.H. and Liu, Z.S. (2018) Spectrality of Certain Moran Measures with Three-Element Digit Sets. Journal of Mathematical Analysis and Applications, 459, 743-752.
https://doi.org/10.1016/j.jmaa.2017.11.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133