全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

广义E-凸区间值优化问题的最优性条件
Optimality Conditions for Generalized E-Convex Interval-Valued Optimization Problems

DOI: 10.12677/AAM.2022.111042, PP. 342-348

Keywords: E-凸区间值优化问题,广义E-凸性,E-KKT最优性条件
E-Convex Interval-Valued Optimization Problems
, Generalized E-Convexity, E-KKT Optimality Conditions

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究带不等式和等式约束的广义E-凸区间值优化问题(IOPE),引入E-?c凸,E-c伪凸,严格E-c伪凸,E-c拟凸等广义E-凸性条件,给出(IOPE)的必要性和充分性最优性条件。
In this paper, we studied the generalized E-convex interval-valued optimization problems with inequality and equality constraints (IOPE). We gave the necessary and sufficient optimality conditions for (IOPE) by the generalized E-c convex conditions, such as E-c convexity, E-c pseudoconvexity, strict E-c pseudoconvexity, E- quasiconvexity.

References

[1]  Wu, H.C. (2007) The Karush-Kuhn-Tucker Optimality Conditions in an Optimization Problem with Interval-Valued Objective Function. European Journal of Operational Research, 176, 46-59.
https://doi.org/10.1016/j.ejor.2005.09.007
[2]  Sun, Y. and Wang, L. (2013) Optimality Conditions and Duality in Nondifferentiable Interval-Valued Programming. Journal of Industrial and Management Optimization, 9, 131-142.
https://doi.org/10.3934/jimo.2013.9.131
[3]  Tung, L.T. (2020) Karush-Kuhn-Tucker Optimality Conditions and Duality for Convex Semi-Infinite Programming with Multiple Interval-Valued Objective Functions. Journal of Applied Mathematics and Computing, 62, 67-91.
https://doi.org/10.1007/s12190-019-01274-x
[4]  Ahmad, I., Kummari, K. and Al-Homidan, S. (2020) Sufficiency and Duality for Interval-Valued Optimization Problems with Vanishing Constraints Using Weak Constraint Qualifications. International Journal of Analysis and Applications, 18, 784-798.
[5]  Youness, E.A. (1999) E-Convex Sets, E-Convex Functions, and E-Convex Programming. Journal of Optimization Theory and Applications, 102, 439-450.
https://doi.org/10.1023/A:1021792726715
[6]  蔡章华, 范晓冬. E-凸区间值函数及其在优化问题中的应用[J]. 渤海大学学报(自然科学版), 2010, 31(3): 245-249.
[7]  Luu, D.V. and Mai, T.T. (2016) Optimality and Duality in constrained Interval-Valued Optimization. Journal of Applied Mathematics and Computing, 50, 59-71.
https://doi.org/10.1007/s12190-014-0858-2
[8]  Abdulaleem, N. (2019) E-Optimality Conditions for E-Differentiable E-Invex Multiobjective Programming Problems. WSEAS Transactions on Mathematics, 18, 14-27.
[9]  Antczak, T. and Abdulaleem, N. (2020) Optimality Conditions for E-Differentiable Vector Optimization Problems with the Multiple Interval-Valued Objective Function. Journal of Industrial and Management Optimization, 16, 2971-2989.
https://doi.org/10.3934/jimo.2019089
[10]  邓春艳, 彭再云, 陈雪静, 彭志莹. E-预不变凸区间值函数及其在数学规划中的应用[J]. 重庆师范大学学报(自然科学版), 2021, 38(1): 30-38.
[11]  Guu, S.M., Singh, Y. and Mishra, S.K. (2017) On Strong KKT Type Sufficient Optimality Conditions for Multiobjective Semi-Infinite Programming Problems with Vanishing Constraints. Journal of Inequalities and Applications, 282, 1-9.
https://doi.org/10.1186/s13660-017-1558-x
[12]  Moore, R.E. (1979) Methods and Applications of Interval Analysis. SIAM, Philadelphia.
https://doi.org/10.1137/1.9781611970906
[13]  Mangasarian, O.L. (1994) Nonlinear Programming. Society for Industrial and Applied Mathematics, Philadelphia.
https://doi.org/10.1137/1.9781611971255

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133