All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

建立多源异构编码映射关系的实践
Practice of Establishing Multi-Source Heterogeneous Coding Mapping Relationship

DOI: 10.12677/HJDM.2022.121009, PP. 80-89

Keywords: 政务大数据,数据治理,数据融合,异构编码,编码映射,列联分析
Government Big Data
, Data Governance, Data Fusion, Heterogeneous Coding, Coding Mapping, Contingency Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

在政务大数据中心的数据治理过程中,不同政务场景下,由于管理策略不同,业务过程对实体对象的相同属性信息的记录会有不同的数据编码结构,这就是政务数据多源融合过程中常见的一种难题。与常规方法不同,本文通过引入统计学的列联相关分析法,解决了不同业务场景的异构法人登记属性融合问题,建立了准确的映射关系。此实践将统计学方法应用到多源异构政务数据融合过程中,不仅快速、低成本的解决了实际问题,并且对于解决其他数据融合问题具有较高的参考价值。
In the data governance process of government big data center, under different government scenarios, due to different management strategies, the records of the same attribute information of entity objects in business processes will have different data coding structures, which is a common problem in the process of multi-source fusion of government data. Different from the conventional methods, this paper solves the problem of heterogeneous legal person registration attribute fusion in different business scenarios by introducing the statistical column correlation analysis method, and establishing an accurate mapping relationship. This practice applies statistical methods to the process of multi-source heterogeneous government data fusion, which not only solves practical problems quickly and at low cost, but also has the high reference value for solving other data fusion problems.

References

[1]  叶战备. 政务数据治理的现实推进及其协同逻辑——以N市为例[J]. 中国行政管理, 2021(6): 44-49.
[2]  夏义堃. 政府数据治理的国际经验与启示[J]. 信息资源管理学报, 2018(3): 64-72+101.
[3]  金振坤. 网络编码中优化问题研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2018.
[4]  衡容, 贾开. 数字经济推动政府治理变革: 外在挑战、内在原因与制度创新[J]. 电子政务, 2020(6): 55-62.
[5]  王静龙, 梁小筠. 定性数据分析[M]. 上海: 华东师范大学出版社, 2005.
[6]  曾俊. 大数据驱动“互联网+政务服务”模式创新研究[J]. 中国管理信息化, 2019(8): 161-162.
[7]  沈王恒. 浦东新区政务数据融合服务平台的探索[J]. 信息技术与标准化, 2021(6): 13-18.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413