|
非线性奇异积分方程离散方程的一个混沌现象
|
Abstract:
本文讨论一种非常系数的非线性奇异积分方程的特征方程的数值求解。先通过对核函数做Lagrange插值,再用奇异积分的HG求积公式对积分进行离散,从而得到原方程的离散方程。再对这个非线性的离散代数方程用迭代方法求解,探讨求解过程中出现的混沌现象。
This paper deals with the numerical solution of the characteristic equation of a nonlinear singular integral equation with extraordinary coefficients. Firstly, the kernel function is interpolated by Lagrange, and then the integral is discretized by the HG quadrature formula of singular integral, so as to obtain the discrete equation of the original equation. Then the nonlinear discrete algebraic equation is solved by iterative method, and the chaotic phenomenon in the solution process is discussed.
[1] | Erdogan, F., Gupta, G.D. and Cook, T.S. (1973) Numerical Solution of Singular Integral Equations. Springer, Netherlands. https://doi.org/10.1007/978-94-017-2260-5_7 |
[2] | 杜金元. 奇异积分数值解法[D]: [博士学位论文]. 武汉: 武汉大学, 1984. |
[3] | 路见可. 一种非线性奇异积分方程的解法[J]. 数学年刊, 2002, 23(5): 619-624. |
[4] | Sahu, P.K. (2016) Numerical Approximate Methods for Solving Linear and Nonlinear Integral Equations. PhD Thesis, NIT, Rourkela. |
[5] | Auer, F.K., Auzinger, W., Burkotová, J., et al. (2022) On Nonlinear Singular BVPs with Nonsmooth Data. Part 2: Convergence of Collocation Methods. Applied Numerical Mathematics, 171, 149-175.
https://doi.org/10.1016/j.apnum.2021.08.016 |