|
过硫酸盐辅助改性TiO2光催化剂处理不同水体中抗生素的降解速率和降解机理研究
|
Abstract:
本文制备的过硫酸盐(PMS)辅助改性TiO2光催化剂(FIF/FTA-PMS)体系对不同水体环境下的不同抗生素有降解作用,通过对降解速率和一级动力学图像进行分析,可知体系中存在自由基活化活性物质和非自由基活化活性物质协同作用,可以抵消复杂水体中复杂组分对光催化剂的负面影响。最后利用TOC (有机碳总量测定)和GC-MS (气相色谱–质谱联用仪)对CIP (环丙沙星)和Rhb (罗丹明B)降解机理进行了分析。
The persulfate-assisted modified TiO2 photocatalyst (FIF/FTA-PMS) system prepared in this paper has degradation effect on different antibiotics in different water environments. By analyzing the degradation rate and first-order kinetic image, it can be seen that there exists synergistic action of free radical activator and non-free radical activator in the system. The negative effects of complex components in complex water bodies on photocatalysts can be offset. Finally, the degradation processes of CIP (ciprofloxacin) and Rhb (rhodamine B) were analyzed by TOC (total organic carbon determination) and GC-MS (gas chromatography-mass spectrometry).
[1] | 熊若晗, 汤题. 光催化技术处理抗生素废水研究进展[J]. 环境与可持续发展, 2017(2): 114-117. |
[2] | 李士俊, 谢文明. 污水处理厂中抗生素除去规律研究进展[J]. 环境科学与技术, 2019, 42(3): 17-29. |
[3] | 杨俊, 王汉欣, 吴韵斐, 等. 苏州市水环境中典型抗生素污染特征及生态风险评估[J]. 生态环境学报, 2019, 28(2): 359-368. |
[4] | 杨俊杰. 抗生素水体污染的处理方法研究[J]. 化工管理, 2018(33): 161-162. |
[5] | Miar Alipour, S., Friedmann, D., Scott, J., et al. (2018) TiO2/Porous Adsorbents: Recent Advances and Novel Applications. Journal of Hazardous Materials, 341, 404-423. https://doi.org/10.1016/j.jhazmat.2017.07.070 |
[6] | 吕静, 张滨, 齐广辉, 等. TiO2光催化氧化法处理抗生素废水[J]. 上海化工, 2014, 39(1): 7-10. |
[7] | Fujishima, A. and Honda, K. (238) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38. https://doi.org/10.1038/238037a0 |
[8] | Kushwaha, H.S., Halder, A., Jain, D., et al. (2015) Visible Light-Induced Photocatalytic and Antibacterial Activity of Li-Doped Bi0.5Na0.45K0.5TiO3-BaTiO3, Ferroeletric Ceramics. Journal of Electronic Materials, 44, 4334-4342.
https://doi.org/10.1007/s11664-015-4007-y |
[9] | Liang, L., Cheng, L., Zhang, Y., et al. (2020) Efficiency and Mechanisms of Rhodamine B Degradation in Fenton-Like Systems Based on Zero-Valent Iron. RSC Advances, 10, 28509-28515. https://doi.org/10.1039/D0RA03125A |
[10] | Mahendran, N., Udayakumar, S. and Praveen, K. (2019) pH-Controlled Photocatalytic Abatement of RhB by an FeWO4/BiPO4 p-n Heterojunction under Visible Light Irradiation. New Journal of Chemistry, 43, 17241-17250.
https://doi.org/10.1039/C9NJ04263F |