全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimization of Contents of Three Raw Clay Materials in Formulation of a Porcelain

DOI: 10.4236/msce.2022.101003, PP. 41-58

Keywords: Raw Minerals, Porcelain, Characterization, Chemical Durability and Phase Transformations

Full-Text   Cite this paper   Add to My Lib

Abstract:

Formulation of traditional hard porcelain generally requires 50% kaolin, 25% silica and 25% feldspar. Four porcelains formulation using the casting method, were prepared with different percentages of kaolinitic clay, sand and pegmatite referenced respectively NONG, SAB and PEG. The physico-chemical, mechanical and mineralogical characteristics were evaluated on specimens formulated and sintered at different temperatures from 1200˚C to 1300˚C. X-ray diffraction has revealed the presence of mullite and quartz as essentially crystalline phases. The specimen formulated with 55% NONG, 25% PEG and 20% SAB and sintered at 1240˚C gives better performance (water absorption: 0.17%, density: 2.42, open porosity: 0.42% and flexural strength: 53.54 MPa).

References

[1]  Yilmaz, S. and Engin Erkmen, Z. (2007) Creep of Hard Porcelain during Firing. American Ceramic Society Bulletin, 86, 9301-9034.
[2]  Carty, W.M. and Senapati, U. (1998) Porcelain-Raw Materials, Processing, Phase Evolution and Mechanical Behavior. Journal of the American Ceramic Society, 81, 3-20.
https://doi.org/10.1111/j.1151-2916.1998.tb02290.x
[3]  Sawadogo, Y., Zerbo, L., Sawadogo, M., Seynou, M., Gomina, M. and Blanchart, P. (2020) Characterization and Use of Raw Materials from Burkina Faso in Porcelain Formulations. Results in Materials, 6, Article ID: 100085.
https://doi.org/10.1016/j.rinma.2020.100085
[4]  Carty, W.M. (2001) Rheology and Plasticity for Ceramic Processing. In: Smith, J. and Bennett, J., Eds., Fundamentals of Refractory Technology, Vol. 125, American Ceramic Society, Westerville, 29-52.
https://doi.org/10.1002/9781118370940.ch2
[5]  Mostari, S. and Haque, J. (2020) Recycling of Post Sintered Sanitaryware Waste in Its Formulation. International Journal of Technical Research & Science, 5, 27-34.
https://doi.org/10.30780/IJTRS.V05.I08.004
[6]  Martin-Marquez, J., Rincon, J.M. and Romero, M. (2008) Effect of Firing Temperature on Sintering of Porcelain Stoneware Tiles. Ceramics International, 34, 1867-1873.
https://doi.org/10.1016/j.ceramint.2007.06.006
[7]  International Organization for Standardization (1995) Norme ISO 10545-3. Détermination de l’absorption d’eau, de la porosité ouverte, de la densité relative apparente et de la masse Volumique Globale.
[8]  International Organization for Standardization (2015) ISO 10545-13. Ceramic Tiles, Determination of Chemical Resistance.
[9]  Seynou, M., Flament, P., Sawadogo, M., Tirlocq, J. and Ouedraogo, R. (2013) Refractory Bricks Based on Tikaré (Burkina Faso) kaolinitic Raw Clay Material. Journal de la Société Ouest-Africaine de Chimie, 35, 49-56.
[10]  Zerbo, L., Seynou, M., Sorgho, B., Lecomte-Nana, G., Gomina, M. and Blanchart, P. (2019) Microstructure and Weibull Distribution of Rupture Strength of Clay-Talc ceramics. Ceramica, 65, 240-245.
https://doi.org/10.1590/0366-69132019653742518
[11]  Abdullaeva, M., Murzubraimov, B., Altybaeva, D., Abdullaeva, Z., Kalykova, G., Suiunbekova, A. and Osmonova, A. (2021) Investigation of Pegmatite Mineral Applicability from the Terek Ceramic Deposit in Kyrgyzstan for Production of Porcelain and Earthenware. Journal of Minerals and Materials Characterization and Engineering, 9, 169-179.
https://doi.org/10.4236/jmmce.2021.92012
[12]  Yates, J.D. and Lombardo, S.J. (2002) Strain Mismatch and Deformation of Slip Cast Alumina Bodies: The Effects of Solids Loading, Dispersant Concentration, and Binder Concentration. In: Carty, W.M., Ed., Materials & Equipment/Whitewares: Ceramic Engineering and Science Proceedings, Vol. 23, American Ceramic Society, Ohio, 1-14.
https://doi.org/10.1002/9780470294734.ch1
[13]  Zanelli, C., Raimondo, M., Guarini, G. and Dondi, M. (2011) The Vitreous Phase of Porcelain Stoneware: Composition, Evolution during Sintering and Physical Properties. Journal of Non-Crystalline Solids, 357, 3251-3260.
https://doi.org/10.1016/j.jnoncrysol.2011.05.020
[14]  Wimuktiwan, P., Rodchom, M., Soongprasit, K., Atong, D. and Vichaphund, S. (2020) Influence of the Addition of Pore Foaming Agent on Mechanical and Thermal Properties of Porcelain Tiles. Ceramics-Silikáty, 64, 164-171.
https://doi.org/10.13168/cs.2020.0005
[15]  Kamseu, E., Leonelli, C., Boccaccini, D.N., Veronesi, P., Miselli, P., Pellacani, G., et al. (2007) Characterisation of Porcelain Compositions Using Two China Clays from Cameroon. Ceramics International, 33, 851-857.
https://doi.org/10.1016/j.ceramint.2006.01.025
[16]  Mustafi, S., Ahsan, M. and Dewan, A.H. (2008) Effect of Particle Size of Quartz on Bending Strength of Porcelain. Bangladesh Journal of Scientific and Industrial Research, 43, 537-544.
https://doi.org/10.3329/bjsir.v43i4.2244
[17]  Yahya, H., Abdul Mois, A.R. and Ahmad, A. (2018) Fabrication and Characterization of Anorthite-Based Porcelain using Malaysian Mineral Resources. International Journal of Current Science and Technology, 1, 106-111.
[18]  Iqbal, Y. and Lee, W.E. (2000) Microstructural Evolution in Triaxial Porcelain. Journal of the American Ceramic Society, 83, 3121-3127.
https://doi.org/10.1111/j.1151-2916.2000.tb01692.x
[19]  Iqbal, Y. (2008) On the Glassy Phase in Tri-Axial Porcelain Bodies. Journal of Pakistan Materials Society, 2, 62-71.
[20]  Taylor, J.R. and Bull, A.C. (1986) Ceramics Glaze Technology. Pergamon Press, New York, 150.
[21]  Amrane, B., Ouedraogo, E., Mamen, B., Djaknoun, S. and Mesrati, N. (2011) Experimental Study of the Thermo-Mechanical Behaviour of Alumina-Silicate Refractory Materials Based on a Mixture of Algerian Kaolinitic Clays. Ceramics International, 37, 3217-3227.
https://doi.org/10.1016/j.ceramint.2011.05.095
[22]  Martin-Marquez, J., De la Torre, A.G., Aranda, M.A.G., Rincon, J.M. and Romero, M. (2009) Evolution with Temperature of Crystalline and Amorphous Phases in Porcelain Stoneware. Journal of the American Ceramic Society, 92, 229-234.
https://doi.org/10.1111/j.1551-2916.2008.02862.x
[23]  Wattanasiriwech, D. and Wattanasiriwech, S. (2011) Fluxing Action of Illite and Microcline in a Triaxial Porcelain Body. Journal of the European Ceramic Society, 31, 1371-1376.
https://doi.org/10.1016/j.jeurceramsoc.2011.01.025
[24]  International Organization for Standardization (2019) EN ISO 10545-4. Ceramic Tiles—Part 4: Determination of Modulus of Rupture and Breaking Strength.
[25]  Ke, S., Cheng, X., Wang, Y., Wang, Q. and Wang, H. (2013) Dolomite, Wollastonite and Calcite as Different CaO Sources in Anorthite-Based Porcelain. Ceramics International, 39, 4953-4960.
https://doi.org/10.1016/j.ceramint.2012.11.091
[26]  Kr Das, S. and Dana, K. (2003) Differences in Densification Behaviour of K- and Na-Feldspar-Containing Porcelain Bodies. Thermochimica Acta, 406, 199-206.
https://doi.org/10.1016/S0040-6031(03)00257-0
[27]  Romero, M., Padilla, I., Contreras, M. and López-Delgado, A. (2021) Mullite-Based Ceramics from Mining Waste: A Review. Minerals, 11, Article No. 332.
https://doi.org/10.3390/min11030332
[28]  Anusavice, K.J. (1992) Degradability of Dental Ceramics. Advances in Dental Research, 6, 82-89.
https://doi.org/10.1177/08959374920060012201
[29]  Dal Bó, M., Dominguini, L., Zimmer, A., Grando, S.R., Kaspari, P. and Hotza, D. (2016) Chemical Tempering of Porcelain Tiles. Ceramics International, 42, 15199-15202.
https://doi.org/10.1016/j.ceramint.2016.06.138
[30]  Tarhana, B., Tarhan, M. and Aydin, T. (2017) Reusing Sanitaryware Waste Products in Glazed Porcelain tile Production. Ceramics International, 43, 3107-3112.
https://doi.org/10.1016/j.ceramint.2016.11.123
[31]  Vieira, C.M.F., Soares, T.M., Sánchez, R. and Monteiro, S.N. (2004) Incorporation of Granite Waste in Red Ceramics. Materials Science and Engineering A, 373, 115-121.
https://doi.org/10.1016/j.msea.2003.12.038
[32]  Fuertes, V., Reinosa, J.J., Fernandez, J.F. and Enríquez, E. (2022) Engineered Feldspar-Based Ceramics: A Review of Their Potential in Ceramic Industry. Journal of the European Ceramic Society, 42, 307-326.
https://doi.org/10.1016/j.jeurceramsoc.2021.10.017
[33]  Lecomte, G.L., Bonnet, J.P. and Blanchart, P. (2007) A Study of the Influence of Muscovite on the Thermal Transformations of Kaolinite from Room Temperature up to 1100 °C. Journal of Materials Science, 42, 8745-8752.
https://doi.org/10.1007/s10853-006-0192-7
[34]  Olupot, P.W. (2006) Assessment of Ceramic Raw Materials in Uganda for Electrical Porcelain. Licentiate Thesis in Material Science, Department of Materials Science and Engineering, Royal Institute of Technology (KTH) Stockholm, Stockholm.
[35]  Chiang, Y.M., Burnie III, D. and Kingery, W.D. (1997) Physical Ceramics: Principles for Ceramic Science and Engineering. John Wiley, New York, 342-344.
[36]  El-Fallal, A.A., Hassan, A.M., Hamouda, I.M. and El-Wassefy, N.A. (2008) Evaluation of Newly Developed Egyptian Low-Fusing (Leucite) Dental Porcelain. Journal of Biophysics and Biomedical, 1, 98-103.
[37]  Ernsberger, F.M. (1980) The Role of Molecular Water in the Diffusive Transport of Protons in Glasses. Physics Chem Glasses, 21, 146-149.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133