Crystallochemical Characterizations, Raman Spectroscopy and Studies Nuclear Magnetic Resonance (NMR) of Cu2Zn(Sn, Si)S4 Compounds for Photovoltaic Applications
In this study, Si-doped Cu2ZnSnS4 compounds (Cu2ZnSn1-xSixS4, 0 ≤ x ≤ 1) were prepared by solid state reaction method for use of materials for photovoltaic cells. The structural and spectroscopic properties of the as-prepared compounds were studied by X-ray diffraction (XRD), 119Sn, 29Si and 65Cu Magic Angle Spinning nuclear magnetic resonance (MAS NMR) and Raman spectroscopy. The Si-substitution in the Sn-site induces three different types of XRD patterns which depend largely on the Si content in the compound. For 0 ≤ x ≤ 0.5, XRD analysis reveals the presence of a pure tetragonal phase of solid solution with I-42m as a space group. Mixed tetragonal and orthorhombic phases were observed for 0.5 < x < 0.8, followed by a pure orthorhombic structure with a space group Pmn21 at high content of Si (x ≥ 0.8). 119Sn MAS NMR spectra show the presence of Sn/Si disorder as a function of the Si content. The 65Cu MAS NMR spectra of the quadratic solid solution confirm the presence of the two copper sites (Cu-2a and Cu-2c) at 780 ppm while in the case of the orthorhombic solid solution samples, a very broad band is observed. The optical properties were investigated of all compounds by UV-Vis diffuse reflectance and the obtained optical band gap values (1.31 to 2.43 eV) confirm a semiconductor character.
References
[1]
Yuan, S.J., Wang, X.S., Zhao, Y.H., Chang, Q.Q., Xu, Z., Kong, J. and Wu, S.X. (2020) Solution Processed Cu(In,Ga)(S,Se)2 Solar Cells with 15.25% Efficiency by Surface Sulfurization. ACS Applied Energy Materials, 3, 6785-6792. https://doi.org/10.1021/acsaem.0c00917
[2]
Syafiq, U., Ataollahi, N., Di Maggio, R. and Scardi, P. (2019) Solution-Based Synthesis and Characterization of Cu2ZnSnS4 (CZTS) Thin Films. Molecules, 24, Article No. 3454. https://doi.org/10.3390/molecules24193454
[3]
Hadke, S.H., Levcenko, S., Lie, S., Hages, C.J., Márquez, J.A., Unold, T. and Wong, L.H. (2018) Synergistic Effects of Double Cation Substitution in Solution-Processed CZTS Solar Cells with over 10% Efficiency. Advanced Energy Materials, 8, Article ID: 1802540. https://doi.org/10.1002/aenm.201802540
[4]
Muslih, E.Y. and Kim, K.H. (2015) Characteristics of Cu2ZnSnS4 Thin Film Prepared by Calcination and Sulfurizing of Metal (Cu,Zn,Sn)-Ethanolamine Precursor Complexed from Metal (Cu,Zn,Sn)-Hydrate. Chalcogenide Letters, 12, 349-355.
[5]
Kapusta, K., Drygas, M., Janik, J.F., Jelen, P., Bucko, M.M. and Olejniczak, Z. (2019) From Magnetic Cubic Pre-Kesterite to Semiconducting Tetragonal Kesterite Cu2ZnSnS4 Nanopowders via the Mechanochemically Assisted Route. Journal of Alloys and Compounds, 770, 981-988. https://doi.org/10.1016/j.jallcom.2018.08.135
[6]
Safdar, A., Islam, M., Akram, M.A., Mujahid, M., Khalid, Y. and Shah, S.I. (2016) Reaction Time and Film Thickness Effects on Phase Formation and Optical Properties of Solution Processed Cu2ZnSnS4 Thin Films. Journal of Materials Engineering and Performance, 25, 457-465. https://doi.org/10.1007/s11665-015-1874-6
[7]
Swami, S.K., Kumar, A. and Dutta, V. (2013) Deposition of Kesterite Cu2ZnSnS4 (CZTS) Thin Films by Spin Coating Technique for Solar Cell Application. Energy Procedia, 33, 198-202. https://doi.org/10.1016/j.egypro.2013.05.058
[8]
Shockley, W. and Queisser, H.J. (2004) Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 32, 510-519. https://doi.org/10.1063/1.1736034
[9]
Fernandes, P., Salomé, P.M.P. and da Cunha, A.F. (2011) Study of Polycrystalline Cu2ZnSnS4 Films by Raman Scattering. Journal of Alloys and Compounds, 509, 7600-7606. https://doi.org/10.1016/j.jallcom.2011.04.097
[10]
Wang, J.S., Li, S., Cai, J.J., Shen, B., Ren, Y.P. and Qin, G.W. (2013) Cu2ZnSnS4 Thin Films: Facile and Cost-Effective Preparation by RF-Magnetron Sputtering and Texture Control. Journal of Alloys and Compounds, 552, 418-422. https://doi.org/10.1016/j.jallcom.2012.11.082
[11]
Malerba, C., Biccari, F., Ricardo, C.L.A., Valentini, M., Chierchia, R., Müller, M., Santoni, A., Esposito, E., Mangiapane, P., Scardi, P. and Mittiga, A. (2014) CZTS Stoichiometry Effects on the Band Gap Energy. Journal of Alloys and Compounds, 582, 528-534. https://doi.org/10.1016/j.jallcom.2013.07.199
[12]
Zhou, F.Z., Zeng, F.Q., Liu, X., Liu, F.Y., Song, N., Yan, C., et al. (2015) Improvement of Jsc in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface. ACS Applied Materials & Interfaces, 7, 22868-22873. https://doi.org/10.1021/acsami.5b05652
[13]
Litvinchuk, A.P., Dzhagan, V.M., Yukhymchuk, V.O., Valakh, M.Y., Parasyuk, O.V., Piskach, L.V., et al. (2016) Crystal Structure and Vibrational Properties of Cu2ZnSiSe4 Quaternary Semiconductor. Physica Status Solidi (B), 253, 1808-1815. https://doi.org/10.1002/pssb.201600175
[14]
Kevin, P., Malik, M.A., McAdams, S. and O’Brien, P. (2015) Synthesis of Nanoparticulate Alloys of the Composition Cu2Zn1-xFexSnS4: Structural, Optical, and Magnetic Properties. Journal of the American Chemical Society, 137, 15085-15089. https://doi.org/10.1021/jacs.5b10281
[15]
Gershon, T., Lee, Y.S., Antunez, P. Mankad, R., Singh, S., Bishop, D., et al. (2016) Photovoltaic Materials and Devices Based on the Alloyed Kesterite Absorber (AgxCu1-x)2ZnSnSe4. Advanced Energy Materials, 6, Article ID: 1502468. https://doi.org/10.1002/aenm.201502468
[16]
Berg, D.M., Arasimowicz, M., Djemour, R., Gütay, L., Siebentritt, S., Schorr, S., et al. (2014) Discrimination and Detection Limits of Secondary Phases in Cu2ZnSnS4 Using X-Ray Diffraction and Raman Spectroscopy. Thin Solid Films, 569, 113-123. https://doi.org/10.1016/j.tsf.2014.08.028
[17]
Tanaka, T., Nagatomo, T., Kawasaki, D., Nishio, M., Guo, Q., Wakahara, A., Yoshida, A. and Ogawa, H. (2005) Preparation of Cu2ZnSnS4 Thin Films by Hybrid Sputtering. Journal of Physics and Chemistry of Solids, 66, 1978-1981. https://doi.org/10.1016/j.jpcs.2005.09.037
[18]
Nitsche, R., Sargent, D.F. and Wild, P. (1967) Crystal Growth of Quaternary 122464 Chalcogenides by Iodine Vapor Transport. Journal of Crystal Growth, 1, 52-53. https://doi.org/10.1016/0022-0248(67)90009-7
[19]
Tombak, A., Ocak, Y.S., Genişel, M.F. and Kilicoglu, T. (2014) Electrical and Optical Properties of Cu2ZnSnS4 Grown by a Thermal Co-Evaporation Method and Its Diode Application. Materials Science in Semiconductor Processing, 28, 98-102. https://doi.org/10.1016/j.mssp.2014.07.006
[20]
Thimsen, E., Riha, S.C., Baryshev, S.V., Martinson, A.B.F., Elam, J.W. and Pellin, M.J. (2012) Atomic Layer Deposition of the Quaternary Chalcogenide Cu2ZnSnS4. Chemistry of Materials, 24, 3188-3196. https://doi.org/10.1021/cm3015463
[21]
Ali, A., Jacob, J., Ashfaq, A., Tamseel, M., Mahmood, K., Amin, N., Hussain, S., Ahmad, W., Rehman, U. and Ikram, S. (2019) Modulation of Structural, Optical and Thermoelectric Properties of Sol-Gel Grown CZTS Thin Films by Controlling the Concentration of Zinc. Ceramics International, 45, 12820-12824. https://doi.org/10.1016/j.ceramint.2019.03.202
[22]
Song, N., Green, M.A., Huang, J.L., Hu, Y.C. and Hao, X.J. (2018) Study of Sputtered Cu2ZnSnS4 Thin Films on Si. Applied Surface Science, 459, 700-706. https://doi.org/10.1016/j.apsusc.2018.07.192
[23]
Patel, S.B. and Gohel, J. V. (2018) Enhanced Solar Cell Performance by Optimization of Spray Coated CZTS Thin Film Using Taguchi and Response Surface Method. Journal of Materials Science: Materials in Electronics, 29, 5613-5623. https://doi.org/10.1007/s10854-018-8530-5
[24]
Choubrac, L., Lafond, A., Guillot-Deudon, C., Moëlo, Y. and Jobic, S. (2012) Structure Flexibility of the Cu2ZnSnS4 Absorber in Low-Cost Photovoltaic Cells: From the Stoichiometric to the Copper-Poor Compounds. Inorganic Chemistry, 51, 3346-3348. https://doi.org/10.1021/ic202569q
[25]
Hamdi, M., Lafond, A., Guillot-Deudon, C., Hlel, F., Gargouri, M. and Jobic, S. (2014) Crystal Chemistry and Optical Investigations of the Cu2Zn(Sn,Si)S4 Series for Photovoltaic Applications. Journal of Solid State Chemistry, 220, 232-237. https://doi.org/10.1016/j.jssc.2014.08.030
[26]
Fournet, G. (1953) étude de la loi de Vegard. Journal de Physique et le Radium, 14, 374-380.
[27]
Rosmus, K.A. and Aitken, J.A. (2011) Cu2ZnSiS4. Acta Crystallographica Section E, 67, i28. https://doi.org/10.1107/S1600536811008889
[28]
Khare, A., Himmetoglu, B., Cococcioni, M. and Aydil, E.S. (2012) First Principles Calculation of the Electronic Properties and Lattice Dynamics of Cu2ZnSn(S1−xSex)4. Journal of Applied Physics, 111, Article ID: 123704. https://doi.org/10.1063/1.4728232
[29]
Gurel, T., Sevik, C. and Cagin, T. (2011) Characterization of Vibrational and Mechanical Properties of Quaternary Compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in Kesterite and Stannite Structures. Physical Review B, 84, Article ID: 205201. https://doi.org/10.1103/PhysRevB.84.205201
[30]
Caballero, R., Garcia-Llamas, E., Merino, J.M., León, M., Babichuk, I., Dzhagan, V., Strelchuk, V. and Valakh, M. (2014) Non-Stoichiometry Effect and Disorder in Cu2ZnSnS4 Thin Films Obtained by Flash Evaporation: Raman Scattering Investigation. Acta Materialia, 65, 412-417. https://doi.org/10.1016/j.actamat.2013.11.010
[31]
Guc, M., Levcenko, S., Izquierdo-Roca, V., Fontane, X., Valakh, M., Arushanov, E. and Pérez-Rodriguez, A. (2013) Polarized Raman Scattering Analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 Single Crystals. Journal of Applied Physics, 114, Article ID: 193514.
[32]
Choubrac, L., Paris, M., Lafond, A., Guillot-Deudon, C., Rocquefelte X. and Jobic, S. (2013) Multinuclear (67Zn, 119Sn and 65Cu) NMR Spectroscopy—An Ideal Technique to Probe the Cationic Ordering in Cu2ZnSnS4 Photovoltaic Materials. Physical Chemistry Chemical Physics, 15, 10722-10725. https://doi.org/10.1039/c3cp51320c
[33]
Nicole, J., Elizabeth, P. and Angus, R. (2016) Multi-Nuclear (119Sn and 65Cu) NMR and Raman Spectroscopy to Probe Secondary Phases in Cu2ZnSnS4. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, 5-10 June 2016, 3046-3050. https://doi.org/10.1109/PVSC.2016.7750224
[34]
Elizabeth, A.P., Andre, S., Nicole, E.J., Daniel, P.S. and Angus, A.R. (2017) Oxygen-Induced Ordering in Bulk Polycrystalline Cu2ZnSnS4 by Sn Removal. Inorganic Chemistry, 56, 12328-12336. https://doi.org/10.1021/acs.inorgchem.7b01777
[35]
Kahraman, S., Cetinkaya, S., Cetinkara, H.A. and Guder, H.A. (2014) Effects of Diethanolamine on Sol-Gel-Processed Cu2ZnSnS4 Photovoltaic Absorber Thin Films. Materials Research Bulletin, 50, 165-171. https://doi.org/10.1016/j.materresbull.2013.10.043
[36]
Guc, M., Levcenko, S., Dermenji, L., Gurieva, G., Schorr, S., Syrbu, N.N. and Arushanov, E. (2014) Excition Spectra and Energy Band Structure of Cu2ZnSiSe. Journal of Alloys and Compounds, 587, 393-397. https://doi.org/10.1016/j.jallcom.2013.10.172
[37]
Levcenco, S., Dumcenco, D., Huang, Y.S., Arushanov, E., Tezlevan, V., Tiong, K.K. and Du, C.H. (2011) Absorption-Edge Anisotropy of Cu2ZnSiQ4 (Q=S, Se) Quaternary Compound Semiconductors. Journal of Alloys and Compounds, 509, 4924-4928. https://doi.org/10.1016/j.jallcom.2011.01.169
[38]
Levcenco, S., Dumcenco, D., Huang, Y.S., Arushanov, E. and Tezlevan, V. (2010) Near Band Edge Anisotropic Optical Transitions in Wide Band Gap Semiconductor Cu2ZnSiS4. Journal of Applied Physics, 108, Article ID: 73508.
[39]
Zamulko, S., Chen, R. and Persson, C. (2017) Investigation of the Structural, Optical and Electronic Properties of Cu2Zn(Sn,Si/Ge)(S/Se)4 Alloys for Solar Cell Applications. Physica Status Solidi (B), 254, Article ID: 1700084. https://doi.org/10.1002/pssb.201700084