全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Construction of the Kernel Matrix by Primitive BCH Codes for Polar Codes

DOI: 10.4236/cn.2022.141003, PP. 23-35

Keywords: Polar Code, Kernel Matrix, Matrix Interception, Partial Distance, Exponent, Scaling Exponent

Full-Text   Cite this paper   Add to My Lib

Abstract:

The polar codes defined by the kernel matrix are a class of codes with low coding-decoding complexity and can achieve the Shannon limit. In this paper, a novel method to construct the 2n-dimensional kernel matrix is proposed, that is based on primitive BCH codes that make use of the interception, the direct sum and adding a row and a column. For ensuring polarization of the kernel matrix, a solution is also put forward when the partial distances of the constructed kernel matrix exceed their upper bound. And the lower bound of exponent of the 2n-dimensional kernel matrix is obtained. The lower bound of exponent of our constructed kernel matrix is tighter than Gilbert-Varshamov (G-V) type, and the scaling exponent is better in the case of 16-dimensional.

References

[1]  Arikan, E. (2009) Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Transactions on Information Theory, 55, 3051-3073.
https://doi.org/10.1109/TIT.2009.2021379
[2]  Şaşoğlu, E. (2011) Polar Coding Theorems for Discrete Systems. école Polytechnique Fédérale de Lausanne, Lausanne.
[3]  Şaşoğlu, E., Telatar, E. and Arikan, E. (2009) Polarization for Arbitrary Discrete Memoryless Channels. Proceedings of 2009 IEEE Information Theory Workshop, Taormina, 11-16 October 2009, 144-148.
https://doi.org/10.1109/ITW.2009.5351487
[4]  Mori, R. and Tanaka, T. (2010) Channel Polarization on q-ary Discrete Memoryless Channels by Arbitrary Kernels. Proceedings of 2010 IEEE International Symposium on Information Theory, Austin, 13-18 June 2010, 894-898.
https://doi.org/10.1109/ISIT.2010.5513568
[5]  Korada, S.B., Şaşoğlu, E. and Urbanke, R. (2010) Polar Codes: Characterization of Exponent, Bounds, and Constructions. IEEE Transactions on Information Theory, 56, 6253-6264.
https://doi.org/10.1109/TIT.2010.2080990
[6]  Moskovskaya, E. and Trifonov, P. (2020) Design of BCH Polarization Kernels with Reduced Processing Complexity. IEEE Communications Letters, 24, 1383-1386.
https://doi.org/10.1109/LCOMM.2020.2984382
[7]  Miloslavskaya, V. and Trifonov, P. (2012) Design of Binary Polar Codes with Arbitrary Kernel. Proceedings of 2012 IEEE Information Theory Workshop, Lausanne, 3-7 September 2012, 119-123.
https://doi.org/10.1109/ITW.2012.6404639
[8]  Shen, L.F. and Ye, Z.H. (2004) Information Theory and Coding. Science Press, Beijing.
[9]  Fazeli, A., Hassani, H., Mondelli, M. and Vardy, A. (2020) Binary Linear Codes with Optimal Scaling: Polar Codes with Large Kernels. IEEE Transactions on Information Theory, 67, 5693-5710.
https://doi.org/10.1109/TIT.2020.3038806
[10]  Hassani, S.H., Alishahi, K. and Urbanke, R.L. (2014) Finite-Length Scaling for Polar Codes. IEEE Transactions on Information Theory, 60, 5875-5898.
https://doi.org/10.1109/TIT.2014.2341919
[11]  Fazeli, A. and Vardy, A. (2014) On the Scaling Exponent of Binary Polarization Kernels. Proceedings of 2014 52nd Annual Allerton Conference on Communication, Control, and Computing, Monticello, 30 September-3 October 2014, 797-804.
https://doi.org/10.1109/ALLERTON.2014.7028536
[12]  Yao, H., Fazeli, A. and Vardy, A. (2019) Explicit Polar Codes with Small Scaling Exponent. Proceedings of 2019 IEEE International Symposium on Information Theory (ISIT), Paris, 7-12 July 2019, 1757-1761.
https://doi.org/10.1109/ISIT.2019.8849741
[13]  Huffman, W.C. (2003) Fundamentals of Error correcting Codes. Cambridge University Press, New York.
https://doi.org/10.1017/CBO9780511807077
[14]  Feng, K.Q. (2005) The Algebraic Theory of Error Correcting Codes. Tsinghua University Press, Beijing.
[15]  Lin, H.P., Lin, S. and Abdel-Ghaffar, K.A.S. (2015) Linear and Nonlinear Binary Kernels of Polar Codes of Small Dimensions with Maximum Exponents. IEEE Transactions on Information Theory, 61, 5253-5270.
https://doi.org/10.1109/TIT.2015.2469298
[16]  Xu, Y.C. and Ma, S.Y. (2013) Algebraic Coding and Cryptography. Higher Education Press, Beijing.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133