全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sea Turtle Nesting: What Is Known and What Are the Challenges under a Changing Climate Scenario

DOI: 10.4236/oje.2022.121001, PP. 1-35

Keywords: Reproductive Ecology, Sea Turtles, Climate Change, Nesting Phenology and Geographic Distribution of Nesting Habitats

Full-Text   Cite this paper   Add to My Lib

Abstract:

The rate of climate change experienced globally in recent decades may compromise sea turtles’ survival; especially temperature increase, which is particularly fast, impacts life history characteristics, such as temperature-dependent sex determination (TSD), late maturity and sea turtles highly migratory nature. This review aims to identify and summarize the information that has been collected from 2009-2020 in order to aid future empirical studies that seek to fill these and other knowledge gaps, and subsequently assist conservationists in making multilevel decisions to protect sea turtle populations and species. In a summarized way the general knowledge acquired so far on the influence of environmental abiotic and biotic factors on nesting behaviour and hatching, emergence and survival successes of sea turtle hatchlings, was gathered. To accomplish this work, a search on Web of Science, Science Direct, NCBI/PubMed, and Google Scholar was carried out using the terms “sea turtles + climate change”. Published articles in the period 2009-2020 were selected, related to the nesting ecology of 5 species of sea turtles: Caretta caretta, Eretmochelys imbricata, Dermochelys coriacea, Chelonia mydas, Lepidochelys olivacea. Emphasis was also placed on geographical information and on population location (e.g. climatic conditions during the nesting season). These articles (N = 126) were analysed giving relevance to researcher’s data interpretations, comparisons with other researches, and the reached conclusions. An attempt was made to represent all 5 species of sea turtles when selecting articles on each of the environmental factors that influence sea turtle nesting: temperature, humidity, nesting substrate, gases, depth of the nest, sea surface temperature (SST), nest location on the beach, nesting phenology and geographic distribution of nesting habitats. The interaction between these parameters and their consequences on the terrestrial phase of reproduction are presented and discussed.

References

[1]  Cadena, E.A. and Parham, J.F. (2015) Oldest Known Marine Turtle? A New Protostegid from the Lower Cretaceous of Colombia. PaleoBios, 32, 1-42.
http://escolarship.org/uc/item/147611bv,
https://doi.org/10.5070/P9321028615
[2]  Fuentes, M.M.P.B., Hamann, M. and Limpus, C.J. (2010) Past, Current and Future Thermal Profiles of Green Turtle Nesting Grounds: Implications from Climate Change. Journal of Experimental Marine Biology and Ecology, 383, 56-64.
https://doi.org/10.1016/j.jembe.2009.11.003
[3]  Almpanidou, V., Katragkou, E. and Mazaris, A.D. (2018) The Efficiency of Phenological Shifts as an Adaptive Response against Climate Change: A Case Study of Loggerhead Sea Turtles (Caretta caretta) in the Mediterranean. Mitigation and Adaptation Strategies for Global Change, 23, 1143-1158.
https://doi.org/10.1007/s11027-017-9777-5
[4]  Poloczanska, E.S., Limpus, C.J. and Hays, G.C. (2009) Chapter 2 Vulnerability of Marine Turtles to Climate Change. Advances in Marine Biology, 56, 151-211.
https://doi.org/10.1016/S0065-2881(09)56002-6
[5]  Reece, J.S., Passeri, D., Ehrhart, L., Hagen, S.C., Hays, A., Long, C., Noss, R.F., Bilskie, M., Sanchez, C., Schwoerer, M.V., Von Holle, B., Weishampel, J. and Wolf, S. (2013) Sea Level Rise, Land Use, and Climate Change Influence the Distribution of Loggerhead Turtle Nests at the Largest USA Rookery (Melbourne Beach, Florida). Marine Ecology Progress Series, 493, 259-274.
https://doi.org/10.3354/meps10531
[6]  Wyneken, J. and Lolavar, A. (2015) Loggerhead Sea Turtle Environmental Sex Determination: Implications of Moisture and Temperature for Climate Change Based Predictions for Species Survival. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324, 295-314.
https://doi.org/10.1002/jez.b.22620
[7]  Rafferty, A.R., Johnstone, C.P., Garner, J.A. and Reina, R.D. (2017) A 20-Year Investigation of Declining Leatherback Hatching Success: Implications of Climate Variation. Royal Society Open Science, 4, Article ID: 170196.
https://doi.org/10.1098/rsos.170196
[8]  Palomino-González, A., López-Martínez, S. and Rivas, M.L. (2020) Influence of Climate and Tides on the Nesting Behaviour of Sea Turtles. Journal of Experimental Marine Biology and Ecology, 527, Article ID: 151378.
https://doi.org/10.1016/j.jembe.2020.151378
[9]  Rivas, M.L., Spínola, M., Arrieta, H. and Faife-Cabrera, M. (2018) Effect of Extreme Climatic Events Resulting in Prolonged Precipitation on the Reproductive Output of Sea Turtles. Animal Conservation, 21, 387-395.
https://doi.org/10.1111/acv.12404
[10]  Tester, P.A., Litaker, R.W. and Berdalet, E. (2020) Climate Change and Harmful Benthic Microalgae. Harmful Algae, 91, Article ID: 101655.
https://doi.org/10.1016/j.hal.2019.101655
[11]  Horne, C.R., Fuller, W.J., Godley, B.J., Rhodes, K.A., Snape, R., Stokes, K.L. and Broderick, A.C. (2014) The Effect of Thermal Variance on the Phenotype of Marine Turtle Offspring. Physiological and Biochemical Zoology, 87, 796-804.
https://doi.org/10.1086/678238
[12]  Montero, N., Ceriani, S.A., Graham, K. and Fuentes, M.M.P.B. (2018) Influences of the Local Climate on Loggerhead Hatchling Production in North Florida: Implications from Climate Change. Frontiers in Marine Science, 5, 262.
https://doi.org/10.3389/fmars.2018.00262
[13]  Tomillo, P.S., Fonseca, L., Paladino, F.V., Spotila, J.R. and Oro, D. (2017) Are Thermal Barriers “Higher” in Deep Sea Turtle Nests? PLoS ONE, 12, e0177256.
https://doi.org/10.1371/journal.pone.0177256
[14]  Howard, R., Bell, I. and Pike, D.A. (2014) Thermal Tolerances of Sea Turtle Embryos: Current Understanding and Future Directions. Endangered Species Research, 26, 75-86.
https://doi.org/10.3354/esr00636
[15]  Mazaris, A.D., Almpanidou, V., Wallace, B.P., Pantis, J.D. and Schofield, G. (2014) A Global Gap Analysis of Sea Turtle Protection Coverage. Biological Conservation, 173, 17-23.
https://doi.org/10.1016/j.biocon.2014.03.005
[16]  Scott, R., Hodgson, D.J, Witt, M.J, Coyne, M.S, Adnyana, W., Blumenthal, J.M, Broderick, A.C, Canbolat, A.F., Catry, P., Ciccione, S., Delcroix, E., Hitipeuw, C., Luschi, P., Pet-Soede, L., Pendoley, K., Richardson, P.B, Rees, A.F. and Godley, B.J. (2012) Global Analysis of Satellite Tracking Data Shows That Adult Green Turtles Are Significantly Aggregated in Marine Protected Areas. Global Ecology and Biogeography, 21, 1053-1061.
https://doi.org/10.1111/j.1466-8238.2011.00757.x
[17]  Marn, N., Jusup, M., Legović, T. and Klanjšćek, T. (2017) Environmental Effects on Growth, Reproduction, and Life-History Traits of Loggerhead Turtles. Ecological Modelling, 360, 163-178.
https://doi.org/10.1016/j.ecolmodel.2017.07.001
[18]  Santos, K.C., Livesey, M., Fish, M. and Lorences, A.C. (2017) Climate Change Implications for the Nest Site Selection Process and Subsequent Hatching Success of a Green Turtle Population. Mitigation and Adaptation Strategies for Global Change, 22, 121-135.
https://doi.org/10.1007/s11027-015-9668-6
[19]  Abreu-Grobois, F.A., Morales-Mérida, B.A., Hart, C.E., Guillon, J.-M., Godfrey, M.H., Navarro, E. and Girondot, M. (2020) Recent Advances on the Estimation of the Thermal Reaction Norm for Sex Ratios. PeerJ, 8, e8451.
https://doi.org/10.7717/peerj.8451
[20]  Lolavar, A. and Wyneken, J. (2020) The Impact of Sand Moisture on the Temperature-Sex Ratio Responses of Developing Loggerhead (Caretta caretta) Sea Turtles. Zoology, 138, Article ID: 125739.
https://doi.org/10.1016/j.zool.2019.125739
[21]  Patino-Martinez, J., Marco, A., Quiñones, L. and Hawkes, L. (2012) A Potential Tool to Mitigate the Impacts of Climate Change to the Caribbean Leatherback Sea Turtle. Global Change Biology, 18, 401-411.
https://doi.org/10.1111/j.1365-2486.2011.02532.x
[22]  Tilley, D., Ball, S., Ellick, J., Goldley, B.J., Weber, N., Weber, S.B. and Broderick, A.C. (2019) No evidence of Fine Scale Thermal Adaptation in Green Turtles. Journal of Experimental Marine Biology and Ecology, 514-515, 110-117.
https://doi.org/10.1016/j.jembe.2019.04.001
[23]  Tomillo, P.S, Genovart, M., Paladino, F.V., Spotila, J.R. and Oro, D. (2015) Climate Change Overruns Resilience Conferred by Temperature-Dependent Sex Determination in Sea Turtles and threatens Their Survival. Global Change Biology, 21, 2980-2988.
https://doi.org/10.1111/gcb.12918
[24]  Wood, A., Booth, D. and Limpus, C. (2014) Sun Exposure, Nest Temperature and Loggerhead Turtle Hatchlings: Implications for Beach Shading Management Strategies at Sea Turtle Rookeries. Journal of Experimental Marine Biology and Ecology, 451, 105-114.
https://doi.org/10.1016/j.jembe.2013.11.005
[25]  Monsinjon, J.R., Wyneken, J., Rusenko K., López-Mendilaharsu, M., Lara, P., Santos, A., dei Marcovaldi, M.A.G., Fuentes, M.M.P.B., Kaska, Y., Tucek, J., Nel, R., Williams, K.L., LeBlanc, A.-M., Rostal, D., Guillon, J.-M. and Girondot, M. (2019) The Climatic Debt of Loggerhead Sea Turtle Populations in a Warming World. Ecological Indicators, 107, Article ID: 105657.
https://doi.org/10.1016/j.ecolind.2019.105657
[26]  Bladow, R.A. and Milton, S.A. (2019) Embryonic Mortality in Green (Chelonia mydas) and Loggerhead (Caretta caretta) Sea Turtle Nests Increases with Cumulative Exposure to Elevated Temperatures. Journal of Experimental Marine Biology and Ecology, 528, Article ID: 151180.
https://doi.org/10.1016/j.jembe.2019.151180
[27]  Kobayashi, S., Wada, M., Fujimoto, R., Kumazawa, Y., Arai, K., Watanabe, G. and Saito, T. (2017) The Effects of Nest Incubation Temperature on Embryos and Hatchlings of the Loggerhead Sea Turtle: Implications of Sex Difference for Survival Rates during Early Life Stages. Journal of Experimental Marine Biology and Ecology, 486, 274-281.
https://doi.org/10.1016/j.jembe.2016.10.020
[28]  Sifuentes-Romero, I., Tezak, B.M., Milton, S.L. and Wyneken, J. (2018) Hydric Environmental Effects on Turtle Development and Sex Ratio. Zoology, 126, 89-97.
https://doi.org/10.1016/j.zool.2017.11.009
[29]  Tedeschi, J.N., Kennington, W.J., Berry, O., Whiting, S., Meekan, M. and Mitchell, N.J. (2015) Increased Expression of Hsp70 and Hsp90 mRNA as Biomarkers of Thermal Stress in Loggerhead Turtle Embryos (Caretta caretta). Journal of Thermal Biology, 47, 42-50.
https://doi.org/10.1016/j.jtherbio.2014.11.006
[30]  Chen, C.-L., Wang, C.-C. and Cheng, I.-J. (2010) Effects of Biotic and Abiotic Factors on the Oxygen Content of Green Sea Turtle Nests during Embryogenesis. Journal of Comparative Physiology B, 180, 1045-1055.
https://doi.org/10.1007/s00360-010-0479-5
[31]  Sim, E.L., Booth, D.T. and Limpus, C.J. (2015) Incubation Temperature, Morphology and Performance in Loggerhead (Caretta caretta) Turtle Hatchlings from Mon Repos, Queensland, Australia. Biology Open, 4, 685-692.
https://doi.org/10.1242/bio.20148995
[32]  Fisher, L.R., Godfrey, M.H. and Owens, D.W. (2014) Incubation Temperature Effects on Hatchling Performance in the Loggerhead Sea Turtle (Caretta caretta). PLoS ONE, 9, e114880.
https://doi.org/10.1371/journal.pone.0114880
[33]  Reneker, J.L. and Kamel, S.J. (2016) Climate Change Increases the Production of Female Hatchlings at a Northern Sea Turtle Rookery. Ecology, 97, 3257-3264.
https://doi.org/10.1002/ecy.1603
[34]  dei Marcovaldi, M.A., Santos, A.J.B., Santos, A.S., Soares, L.S., Lopez, G.G., Godfrey, M.H., López-Mendilaharsu, M. and Fuentes, M.M.P.B. (2014) Spatio-Temporal Variation in the Incubation Duration and Sex Ratio of Hawksbill Hatchlings: Implication for Future Management. Journal of Thermal Biology, 44, 70-77.
https://doi.org/10.1016/j.jtherbio.2014.06.010
[35]  Calderon-Peña, R., Betancourt-Avila, R., Rodríguez-Fajardo, E., Martínez-González, Y. and Azanza-Ricardo, J. (2020) Sex Ratio of the Green Sea Turtle Chelonia mydas (Testudines: Cheloniidae) Hatchlings in the Guanahacabibes Peninsula, Cuba. Revista de Biología Tropical, 68, 777-784.
https://doi.org/10.15517/rbt.v68i3.39033
[36]  Jensen, M.P., Allen, C.D., Eguchi, T., Bell, I.P., LaCasella, E.L., Hilton, W.A., Hof, C. and Dutton, P.H. (2018) Environmental Warming and Feminization of One of the Largest Sea Turtle Populations in the World. Current Biology, 28, 154-159.
https://doi.org/10.1016/j.cub.2017.11.057
[37]  Tezak, B., Sifuentes-Romero, I., Milton, S. and Wyneken, J. (2020) Identifying Sex of Neonate Turtles with Temperature-Dependent Sex Determination via Small Blood Samples. Scientific Reports, 10, Article No. 5012.
https://doi.org/10.1038/s41598-020-61984-2
[38]  Zimm, R., Bentley, B.P., Wyneken, J. and Moustakas-Verho, J.E. (2017) Environmental Causation of Turtle Scute Anomalies in Ovo and in Silico. Integrative and Comparative Biology, 57, 1303-1311.
https://doi.org/10.1093/icb/icx066
[39]  Fleming, K.A., Perrault, J.R., Stacy, N.I., Coppenrath, C.M. and Gainsbury, A.M. (2020) Heat, Health and Hatchlings: Associations of in situ Nest Temperatures with Morphological and Physiological Characteristics of Loggerhead Sea Turtle Hatchlings from Florida. Conservation Physiology, 8, coaa046.
https://doi.org/10.1093/conphys/coaa046
[40]  Booth, D.T. (2017) Influence of Incubation Temperature on Sea Turtle Hatchling Quality. Integrative Zoology, 12, 352-360.
https://doi.org/10.1111/1749-4877.12255
[41]  Patrício, A.R., Varela, M.R., Barbosa, C., Broderick, A.C., Airaud, M.B.F., Godley, B.J., Regalla, A., Tilley, D. and Catry, P. (2018) Nest Site Selection Repeatability of Green Turtles, Chelonia mydas, and Consequences for Offspring. Animal Behaviour, 139, 91-102.
https://doi.org/10.1016/j.anbehav.2018.03.006
[42]  Müller, M.S., Ruiz-García, N.A., García-Gasca, A. and Abreu-Grobois, F.A. (2019) Best Swimmers Hatch from Intermediate Temperatures: Effect of Incubation Temperature on Swimming Performance of Olive Ridley Sea Turtle Hatchlings. Journal of Experimental Marine Biology and Ecology, 519, Article ID: 151186.
https://doi.org/10.1016/j.jembe.2019.151186
[43]  Ashton, K.G. and Feldman, C.R. (2003) Bergmann’s Rule in Nonavian Reptiles: Turtles Follow It, Lizards and Snakes Reverse It. Evolution, 57, 1151-1163.
https://doi.org/10.1111/j.0014-3820.2003.tb00324.x
[44]  Kingsolver, J.G. and Huey, R.B. (2008) Size, Temperature and Fitness: Three Rules. Evolutionary Ecology Research, 10, 251-268.
https://www.evolutionary-ecology.com/abstracts/v10/2242.html
[45]  Le Gouvello, D.Z.M., Nel, R. and Cloete, A.E. (2020) The Influence of Individual Size on Clutch Size and Hatchling Fitness Traits in Sea Turtles. Journal of Experimental Marine Biology and Ecology, 527, Article ID: 151372.
https://doi.org/10.1016/j.jembe.2020.151372
[46]  Stubbs, J.L., Mitchell, N.J., Marn, N., Vanderklift, M.A., Pillans, R.D. and Augustine, S. (2019) A Full Life Cycle Dynamic Energy Budget (DEB) Model for the Green Sea Turtle (Chelonia mydas) Fitted to Data on Embryonic Development. Journal of Sea Research, 143, 78-88.
https://doi.org/10.1016/j.seares.2018.06.012
[47]  Patel, S.H., Morreale, S.J., Saba, V.S., Panagopoulou, A., Margaritoulis, D. and Spotila, J.R. (2016) Climate Impacts on Sea Turtle Breeding Phenology in Greece and Associated Foraging Habitats in the Wider Mediterranean Region. PLoS ONE, 11, e0157170.
https://doi.org/10.1371/journal.pone.0157170
[48]  Staines, M.N., Booth, D.T. and Limpus, C.J. (2019) Microclimatic Effects on the incubation Success, Hatchling Morphology and Locomotor Performance of Marine Turtles. Acta Oecologica, 97, 49-56.
https://doi.org/10.1016/j.actao.2019.04.008
[49]  Booth, D.T. and Evans, A. (2011) Warm Water and Cool Nests Are Best. How Global Warming Might Influence Hatchling Green Turtle Swimming Performance. PLoS ONE, 6, e23162.
https://doi.org/10.1371/journal.pone.0023162
[50]  Miehls, A.L., Peacor, S.D. and McAdam, A.G. (2014) Gape-Limited Predators as Agents of Selection on the Defensive Morphology of an Invasive Invertebrate. Evolution, 68, 2633-2643.
https://doi.org/10.1111/evo.12472
[51]  Fuentes, M.M.P.B. and Abbs, D. (2010) Effects of Projected Changes in Tropical Cyclone Frequency on Sea Turtles. Marine Ecology Progress Series, 412, 283-292.
https://doi.org/10.3354/meps08678I
[52]  IPCC (2013) Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf
[53]  Patino-Martinez, J., Marco, A., Quiñones, L. and Hawkes, L.A. (2014) The Potential Future Influence of Sea Level Rise on Leatherback Turtle Nests. Journal of Experimental Marine Biology and Ecology, 461, 116-123.
https://doi.org/10.1016/j.jembe.2014.07.021
[54]  Lolavar, A. and Wyneken, J. (2015) Effect of Rainfall on Loggerhead Turtle Nest Temperatures, sand Temperatures and Hatchling Sex. Endangered Species Research, 28, 235-247.
https://doi.org/10.3354/esr00684
[55]  Lolavar, A. and Wyneken, J. (2017) Experimental Assessment of the Effects of Moisture on Loggerhead Sea Turtle Hatchling Sex Ratios. Zoology, 123, 64-70.
https://doi.org/10.1016/j.zool.2017.06.007
[56]  Tomillo, P.S., Saba, V.S., Lombard, C.D., Valiulis, J.M., Robinson, N.J., Paladino, F.V., Spotila, J.R., Fernández, C., Rivas, M.L., Tucek, J., Nel, R. and Oro, D. (2015) Global Analysis of the Effect of Local Climate on the Hatchling Output of Leatherback Turtles. Scientific Reports, 5, Article No. 16789.
https://doi.org/10.1038/srep16789
[57]  Hill, J.E., Paladino, F.V., Spotila, J.R. and Tomillo, P.S. (2015) Shading and Watering as a Tool to Mitigate the Impacts of Climate Change in Sea Turtle Nests. PLoS ONE, 10, e0129528.
https://doi.org/10.1371/journal.pone.0129528
[58]  Tomillo, P.S., Saba, V.S., Blanco, G.S., Stock, C.A., Paladino, F.V. and Spotila, J.R. (2012) Climate Driven Egg and Hatchling Mortality Threatens Survival of Eastern Pacific Leatherback Turtles. PLoS ONE, 7, e37602.
https://doi.org/10.1371/journal.pone.0037602
[59]  Marco, A., Abella-Perez, E. and Tiwari, M. (2017) Vulnerability of Loggerhead Turtle Eggs to the Presence of Clay and Silt on Nesting Beaches. Journal of Experimental Marine Biology and Ecology, 486, 195-203.
https://doi.org/10.1016/j.jembe.2016.10.015
[60]  Laloë, J.-O., Esteban, N., Berkel, J. and Hays, G.C. (2016) Sand Temperatures for Nesting Sea Turtles in the Caribbean: Implications for Hatchling Sex Ratios in the Face of Climate Change. Journal of Experimental Marine Biology and Ecology, 474, 92-99.
https://doi.org/10.1016/j.jembe.2015.09.015
[61]  Montero, N., Tomillo, P.S., Saba, V.S., deiMarcovaldi, M.A.G., López-Mendilaharsu, M., Santos, A.S. and Fuentes, M.M.P.B. (2019) Effects of Local Climate on Loggerhead Hatchling Production in Brazil: Implications from Climate Change. Scientific Reports, 9, Article No. 8861.
https://doi.org/10.1038/s41598-019-45366-x
[62]  Foley, A.M., Peck, S.A. and Harman, G.R. (2006) Effects of Sand Characteristics and Inundation on the Hatching Success of Loggerhead Sea Turtle (Caretta caretta) Clutches on Low-Relief Mangrove Islands in Southwest Florida. Chelonian Conservation and Biology, 5, 32-41.
https://doi.org/10.2744/1071-8443(2006)5 [32:EOSCAI]2.0.CO;2
[63]  Saito, T., Wada, M., Fugimoto, R., Kobayashi, S. and Kumazawa, Y. (2019) Effects of Sand Type on Hatch, Emergence, and Locomotor Performance in Loggerhead Turtle Hatchlings. Journal of Experimental Marine Biology and Ecology, 511, 54-59.
https://doi.org/10.1016/j.jembe.2018.10.008
[64]  Fuentes, M.M.P.B., Dawson, J.L., Smithers, S.G., Hamann, M. and Limpus, C.J. (2010) Sedimentological Characteristics of Key Sea Turtle Rookeries: Potential Implications under Projected Climate Change. Marine and Freshwater Research, 61, 464-473.
https://doi.org/10.1071/MF09142
[65]  Hays, G.C., Ashworth, J.S., Barnsley, M.J., Broderick, A.C., Emery, D.R., Godley, B.J., Henwood, A. and Jones, E.L. (2001) The Importance of Sand Albedo for the Thermal Conditions on Sea Turtle Nesting Beaches. Oikos, 93, 87-94.
https://doi.org/10.1034/j.1600-0706.2001.930109.x
[66]  Weber, S.B., Broderick, A.C., Groothuis, T.G., Ellick, J., Godley, B.J. and Blount, J.D. (2012) Fine-Scale Thermal Adaptation in a Green Turtle Nesting Population. Proceedings of the Royal Society B, 279, 1077-1084.
https://doi.org/10.1098/rspb.2011.1238
[67]  Laloë, J.-O., Cozens, J., Renom, B., Taxonera, A. and Hays, G.C. (2014) Effects of Rising Temperature on the Viability of an Important Sea Turtle Rookery. Nature Climate Change, 4, 513-518.
https://doi.org/10.1038/nclimate2236
[68]  Fadini, L.S., Silva, A.G. and Ferreira-Júnior, P.D. (2011) Sedimentary Characteristicsand Their Effects on Hatching Success and incubation Duration of Caretta caretta (Testudines: Cheloniidae) in Espirito Santo, Brazil. Zoologia, 28, 312-320.
https://doi.org/10.1590/S1984-46702011000300005
[69]  I-Jiunn, C., Chia-hua, L. and Cheng-Tsung, T. (2015) Factors Influencing Variations of Oxygen Content in Nests of Green Sea Turtles during Egg Incubation with a Comparison of Two Nesting Environments. Journal of Experimental Marine Biology and Ecology, 471, 104-111.
https://doi.org/10.1016/j.jembe.2015.05.013
[70]  Rusli, M.U., Booth, D.T. and Joseph, J. (2016) Synchronous Activity Lowers the Energetic Cost of Nest Escape for Sea Turtle Hatchlings. Journal of Experimental Biology, 219, 1505-1513.
https://doi.org/10.1242/jeb.134742
[71]  Ackerman, R.A. (1980) Physiological and Ecological Aspects of Gas Exchange by Sea Turtle Eggs. American Zoologist, 20, 575-583.
https://doi.org/10.1093/icb/20.3.575
[72]  Bézy, V.S., Valverde, R.A. and Plante, C.J. (2015) Olive Ridley Sea Turtle Hatching Success as a Function of the Microbial Abundance in Nest Sand at Ostional, Costa Rica. PLoS ONE, 10, e0118579.
https://doi.org/10.1371/journal.pone.0118579
[73]  Candan, O. and Candan, E.D. (2020) Bacterial Diversity of the Green Turtle (Chelonia mydas) Nest Environment. The Science of the Total Environment, 720, Article ID: 137717.
https://doi.org/10.1016/j.scitotenv.2020.137717
[74]  Gambino, D., Persichetti, M.F., Gentile, A., Arculeo, M., Visconti, G., Currò, V., Caracappa, G., Crucitti, D., Piazza, A., Mancianti, F., Nardoni, S., Vicari, D. and Caracappa, S. (2020) First Data on Microflora of Loggerhead Sea Turtle (Caretta caretta) Nests from the Coastlines of Sicily. Biology Open, 9, bio045252.
https://doi.org/10.1242/bio.045252
[75]  Gifari, T., Elfidasari, D. and Sugoro, I. (2018) The Effects of Contaminant Microorganism towards Chelonia mydas Eggs Hatchery Results in Pangumbahan Green Sea Turtles Conservation, Sukabumi, Indonesia. Biodiversitas, 19, 1207-1212.
https://doi.org/10.13057/biodiv/d190404
[76]  Hoh, D.Z., Lin, Y.-F., Sidique, S.N.M. and Tsai, I.J. (2020) Nest Microbiota and Pathogen Abundance in Sea Turtle Hatcheries. Fungal Ecology, 47, 1505-1513.
https://doi.org/10.1016/j.funeco.2020.100964
[77]  Sarmiento-Ramírez, J.M., Abella-Pérez, E., Phillott, A.D., Sim, J., van West, P., Martín, M.P., Marco, A. and Diéguez-Uribeondo, J. (2014) Global Distribution of Two Fungal Pathogens Threatening Endangered Sea Turtles. PLoS ONE, 9, e85853.
https://doi.org/10.1371/journal.pone.0085853
[78]  Sarmiento-Ramirez, J.M., Sim, J., Van West, P. and Dieguez-Uribeondo, J. (2017) Isolation of Fungal Pathogens from Eggs of the Endangered Sea Turtle Species Chelonia mydas in Ascension Island. Journal of the Marine Biological Association of the United Kingdom, 97, 661-667.
https://doi.org/10.1017/S0025315416001478
[79]  Honarvar, S., Spotila, J.R. and O’Connor, M.P. (2011) Microbial Community Structure in Sand on Two Olive Ridley Arribada Nesting Beaches, Playa La Flor, Nicaragua and Playa Nancite, Costa Rica. Journal of Experimental Marine Biology and Ecology, 409, 339-344.
https://doi.org/10.1016/j.jembe.2011.09.015
[80]  Tsiafoulis, M.A., Dimitriadis, C., Boutsis, G. and Mazaris, A.D. (2020) Nematode Community Characteristics Are Associated to Loggerhead Turtle Hatching Success. Ecological Indicators, 111, Article ID: 105977.
https://doi.org/10.1016/j.ecolind.2019.105977
[81]  Varela, M.R., Patrício, A.R. Anderson, K., Broderick, A.C., DeBell, L., Hawkes, L.A., Tilley, D., Snape, R.T.E., Westoby, M.J. and Godley, B.J. (2019) Assessing Climate Change Associated Sea-Level Rise Impacts on Sea Turtle Nesting Beaches Using Drones, Photogrammetry and a Novel GPS System. Global Change Biology, 25, 753-762.
https://doi.org/10.1111/gcb.14526
[82]  Marco, A., Abella-Perez, E., Martins, S., López, O. and Patino-Martinez, J. (2017) Female Nesting Behaviour Affects Hatchling Survival and Sex Ratio in the Loggerhead Sea Turtle: Implications for Conservation Programmes. Ethology Ecology & Evolution, 30, 141-145.
https://doi.org/10.1080/03949370.2017.1330291
[83]  Lamont, M.M., Johnson, D. and Carthy, R.R. (2020) The Incubation Environment of Nests Deposited by a Genetically Distinct Group of Loggerhead Sea Turtles in Northwest Florida. Global Ecology and Conservation, 23, e01070.
https://doi.org/10.1016/j.gecco.2020.e01070
[84]  Ackerman, R.A. (1996) The Nest Environment and the Embryonic Development of Sea Turtles. In: Lutz, P.L. and Musick, J.A., Eds., The Biology of Sea Turtles, CRC Press, Boca Raton, 83-106.
[85]  Swiggs, J., Paladino, F.V, Spotila, J.R. and Tomillo, P.S. (2018) Depth of the Drying Front and Temperature Affect Emergence of Leatherback Turtle Hatchlings from the Nest. Marine Biology, 165, 1-10.
https://doi.org/10.1016/j.jembe.2015.05.013
[86]  Blechschmidt, J., Wittmann, M.J. and Blüml, C. (2020) Climate Change and Green Sea Turtle Sex Ratio-Preventing Possible Extinction. Genes, 11, 588.
https://doi.org/10.3390/genes11050588
[87]  Girondot, M. and Kaska, Y. (2015) Nest Temperatures in a Loggerhead Nesting Beach in Turkey Is More Determined by Sea Surface than Air Temperature. Journal of Thermal Biology, 47, 13-18.
https://doi.org/10.1016/j.jtherbio.2014.10.008
[88]  Patrício, A.R., Hawkes, I.A., Monsinjon, J.R., Godley, B.J. and Fuentes, M.M.P.B. (2021) Climate Change and Marine Turtles: Recent Advances and Future Directions. Endangered Species Research, 44, 363-395.
https://doi.org/10.3354/esr01110
[89]  Mazaris, A.D., Kallimanis, A.S., Tzanopoulos, J., Sgardellis, S.P. and Pantis, J.D. (2009) Sea Surface Temperature Variations in Core Foraging Grounds Drive Nesting Trends and Phenology of Loggerhead Turtles in the Mediterranean Sea. Journal of Experimental Marine Biology and Ecology, 379, 23-27.
https://doi.org/10.1016/j.jembe.2009.07.026
[90]  Neeman, N., Robinson, N.J., Paladino, F.V., Spotila, J.R. and O’Connor, M.P. (2015) Phenology Shifts in Leatherback Turtles (Dermochelys coriacea) Due to Changes in Sea Surface Temperature. Journal of Experimental Marine Biology and Ecology, 462, 113-120.
https://doi.org/10.1016/j.jembe.2014.10.019
[91]  Stubbs, J.L., Marn, N., Vanderklift, M.A., Fossette, S. and Mitchell, N.J. (2020) Simulated Growth and Reproduction of Green Turtles (Chelonia mydas) under Climate Change and Marine Heatwave Scenarios. Ecological Modelling, 431, Article ID: 109185.
https://doi.org/10.1016/j.ecolmodel.2020.109185
[92]  Chaloupka, M., Kamezaki, N. and Limpus, C. (2008) Is Climate Change Affecting the Population Dynamics of the Endangered Pacific Loggerhead Sea Turtle? Journal of Experimental Marine Biology and Ecology, 356, 136-143.
https://doi.org/10.1016/j.jembe.2007.12.009
[93]  Cardona, L., Clusa, M., Eder, E., Demetropoulos, A., Margaritoulis, D., Rees, A.F., Hamza, A.A., Khalil, M., Levy, Y., Türkozan, O., Marín, I. and Aguilar, A. (2014) Distribution Patterns and Foraging Ground Productivity Determine Clutch Size in Mediterranean Loggerhead Turtles. Marine Ecology Progress Series, 497, 229-241.
https://doi.org/10.3354/meps10595
[94]  Donaton, J., Durham, K., Cerrato, R., Schwerzmann, J. and Thorne, L.H. (2019) Long-Term Changes in Loggerhead Sea Turtle Diet Indicate Shifts in the Benthic Community Associated with Warming Temperatures. Estuarine, Coastal and Shelf Science, 218, 139-147.
https://doi.org/10.1016/j.ecss.2018.12.008
[95]  Hays, G.C. (2000) The Implications of Variable Remigration Intervals for the Assessment of Population Size in Marine Turtles. Journal of Theoretical Biology, 206, 221-227.
https://doi.org/10.1006/jtbi.2000.2116
[96]  Mazaris, A.D., Kallimanis, A.S., Sgardelis, S.P. and Pantis, J.D. (2008) Do Long-Term Changes in Sea Surface Temperature at the Breeding Areas Affect the Breeding Dates and Reproduction Performance of Mediterranean Loggerhead Turtles? Implications for Climate Change. Journal of Experimental Marine Biology and Ecology, 367, 219-226.
https://doi.org/10.1016/j.jembe.2008.09.025
[97]  Weishampel, J., Bagley, D., Ehrhart, L. and Weishampel, A. (2010) Nesting Phonologiesof Two Sympatric Sea Turtle Species Related to Sea Surface Temperatures. Endangered Species Research, 12, 41-47.
https://doi.org/10.3354/esr00290
[98]  Kobayashi, S., Aokura, N., Fujimoto, R., Mori, K., Kumazawa, Y. ando, Y., Matsuda, T., Nitto, H., Arai, K., Watanabe, G. and Saito, T. (2018) Incubation and Water Temperatures Influence the Performances of Loggerhead Sea Turtle Hatchlings during the Dispersal Phase. Scientific Reports, 8, Article No. 11911.
https://doi.org/10.1038/s41598-018-30347-3
[99]  Le Gouvello, D.Z.M., Hart-Davis, M., Backeberg, B.C. and Nel, R. (2020) Effects of Swimming Behaviour and Oceanography on Sea Turtle Hatchling Dispersal at the Intersection of Two Ocean Current Systems. Ecological Modelling, 431, Article ID: 109130.
https://doi.org/10.1016/j.ecolmodel.2020.109130
[100]  Pilcher, N.J., Perry, L., Antonopoulou, M., Abdel-Moati, M.A., Abdessalaam, T.Z.A., Albeldawi, M., Ansi, M.A., Al-Mohannadi, S.F., Baldwin, R., Chikhi, A., Das, H.S., Hamza, S., Kerr, O.J., Kiyumi, A.A., Mobaraki, A., Suwaidi, H.S.A., Suweidi, A.S.A., Sawaf, M., Tourenq, C., Williams, J. and Willson, A. (2014) Short-Term Behavioural Responses to Thermal Stress by Hawksbill Turtles in the Arabian Region. Journal of Experimental Marine Biology and Ecology, 457, 190-198.
https://doi.org/10.1016/j.jembe.2014.04.002
[101]  Gaspar, P. and Lalire, M. (2017) A Model for Stimulating the Active Dispersal of Juvenile Sea Turtles with a Case Study on Western Pacific Leatherback Turtles. PLoS ONE, 12, e0181595.
https://doi.org/10.1371/journal.pone.0181595
[102]  Cavallo, C., Dempster, T., Kearney, M.R., Kelly, E., Booth, D.T., Hadden, K.M. and Jessop, T.S. (2015) Predicting Climate Warming Effects on Green Turtle Hatchling Viability and Dispersal Performance. Functional Ecology, 29, 768-778.
https://doi.org/10.1111/1365-2435.12389
[103]  Almpanidou, V., Markantonatou, V. and Mazaris, A.D. (2019) Thermal Heterogeneity along the Migration Corridors of the Sea Turtles: Implications for Climate Change Ecology. Journal of Experimental Marine Biology and Ecology, 520, Article ID: 151223.
https://doi.org/10.1016/j.jembe.2019.151223
[104]  Pike, D.A., Roznik, E.A. and Bell, I. (2015) Nest Inundation from Sea-Level Rise Threatens Sea Turtle Population Viability. Royal Society Open Science, 2, Article ID: 150127.
https://doi.org/10.1098/rsos.150127
[105]  Maurer, A.S. and Johnson, M.W. (2017) Loggerhead Nesting in the Northern Gulf of Mexico: Importance of Beach Slope to Nest Site Selection in the Mississippi Barrier Islands. Chelonian Conservation and Biology, 16, 250-254.
https://doi.org/10.2744/CCB-1256.1
[106]  Caut, S., Guirlet, E. and Girondot, M. (2010) Effect of Tidal Overwash on the Embryonic Development of Leatherback Turtles in French Guiana. Marine Environmental Research, 69, 254-261.
https://doi.org/10.1016/j.marenvres.2009.11.004
[107]  Taherkhani, M., Vitousek, S., Barnard, P.L., Frazer, N. Anderson, T.R. and Fletcher, C.H. (2020) Sea-Level Rise Exponentially Increases Coastal Flood Frequency. Scientific Reports, 10, Article No. 6466.
https://doi.org/10.1038/s41598-020-62188-4
[108]  Veelenturf, C.A., Sinclair, E.M., Paladino, F.V. and Honarvar, S. (2020) Predicting the Impacts of Sea Level Rise in Sea Turtle Nesting Habitat on Bioko Island, Equatorial Guinea. PLoS ONE, 15, e0222251.
https://doi.org/10.1371/journal.pone.0222251
[109]  Wood, D.W. and Bjorndal, K.A. (2000) Relation of Temperature, Moisture, Salinity, and Slope to Nest Site Selection in Loggerhead Sea Turtles. Copeia, 1, 119-128.
https://doi.org/10.1643/0045-8511(2000)2000 [0119:ROTMSA]2.0.CO;2
[110]  Patrício, A.R., Varela, M.R., Barbosa, C., Broderick, A.C., Catry, P., Hawkes, L.A., Regalla, A. and Godley, B.J. (2019) Climate Change Resilience of a Globally Important Sea Turtle Nesting Population. Global Change Biology, 25, 522-535.
https://doi.org/10.1111/gcb.14520
[111]  Serafini, T.Z., Lopez, G.G. and da Rocha, P.L.B. (2009) Nest site selection and hatching success of hawksbill and loggerhead sea turtles (Testudines, Cheloniidae) at Arembepe Beach, Northeastern Brazil. Phyllomedusa, 1, 3-17.
https://doi.org/10.11606/issn.2316-9079.v8i1p03-17
[112]  Zavaleta-Lizárraga, L. and Moráles-Mávil, J.E. (2013) Nest Site Selection by the Green Turtle (Chelonia mydas) in a Beach of the North of Veracruz, Mexico. Revista Mexicana de Biodiversidad, 84, 927-937.
https://doi.org/10.7550/rmb.31913
[113]  ávila-Aguilar, A. (2015) Nest-Site Selection of Lepidochelys olivacea (Testudines: Cheloniidae) in the South Pacific Region of Costa Rica. Revista de Biología Tropical, 63, 375-381.
https://doi.org/10.15517/rbt.v63i1.23116
[114]  Pike, D.A. (2009) Do Green Turtles Modify Their Nesting Seasons in Response to Environmental Temperatures? Chelonian Conservation and Biology, 8, 43-47.
https://doi.org/10.2744/CCB-0726.1
[115]  Anastácio, R., Santos, C., Lopes, C., Moreira, H., Souto, L., Ferrão, J., Garnier, J. and Pereira, M.J. (2014) Reproductive Biology and Genetic Diversity of the Green Turtle (Chelonia mydas) in Vamizi Island, Mozambique. SpringerPlus, 3, 540.
https://doi.org/10.1186/2193-1801-3-540
[116]  Liles, M.J., Peterson, T.R., Seminoff, J.A., Gaos, A.R., Altamirano, E., Henríquez, A.V., Gadea, V., Chavarría, S., Urteaga, J., Wallace, B.P. and Peterson, M.J. (2019) Potential Limitations of Behavioural Plasticity and the Role of Egg Relocation in Climate Change Mitigation for a Thermally Sensitive Endangered Species. Ecology and Evolution, 9, 1603-1622.
https://doi.org/10.1002/ece3.4774
[117]  Stiebens, V.A., Merino, S.E., Roder, C., Chain, F.J.J., Lee, P.L.M. and Eizaguirre, C. (2013) Living on the Edge: How Philopatry Maintains Adaptive Potential. Proceedings of the Royal Society B, 280, Article ID: 20130305.
https://doi.org/10.1098/rspb.2013.0305
[118]  Pike, D.A. (2013) Climate Influences the Global Distribution of Sea Turtle Nesting. Global Ecology and Biogeography, 22, 555-566.
https://doi.org/10.1111/geb.12025
[119]  Hamann, M., Limpus, C.J. and Read, M.A. (2007) Chapter 15: Vulnerability of Marine Reptiles in the Great Barrier Reef to Climate Change. In: Johnson, J.E. and Marshall, P.A., Eds., Climate Change and the Great Barrier Reef: A Vulnerability Assessment, Great Barrier Reef Marine Park Authority and Australia Greenhouse Office, Townsville, 465-496. |
http://hdl.handle.net/11017/547
[120]  Lohmann, K.J., Lohmann, C.M.F., Brothers, J.R. and Putman, N.F. (2013) Natal Homing and Imprinting in Sea Turtles (Chapter 3). In: Wyneken, J., Lohmann, K.J. and Musick, J.A., Ed., The Biology of Sea Turtles, Volume III, CRC Press, Boca Raton, 59-73.
https://doi.org/10.1201/b13895-4
[121]  Stokes, K.L., Fuller, W.J., Glen, F., Godley, B.J., Hodgson, D.J., Rhodes, K.A., Snape, R.T.E. and Broderick, A.C. (2014) Detecting Green Shoots of Recovery: The Importance of Long-Term Individual-Based Monitoring of Marine Turtles. Animal Conservation, 17, 593-602.
https://doi.org/10.1111/acv.12128
[122]  Tanner, C.E., Marco, A., Martins, S., Abella-Perez, E. and Hawkes, L.A. (2019) Highly Feminised Sex-Ratio Estimations for the World’s Third-Largest Nesting Aggregation of Loggerhead Sea Turtles. Marine Ecology Progress Series, 621, 209-219.
https://doi.org/10.3354/meps12963
[123]  Butt, N., Whiting, S. and Dethmers, K. (2016) Identifying Future Sea Turtle Conservation Areas under Climate Change. Biological Conservation, 204, 189-196.
https://doi.org/10.1016/j.biocon.2016.10.012
[124]  Pike, D.A. (2013) Forecasting Range Expansion into Ecological Traps: Climate-Mediated Shifts in Sea Turtle Nesting Beaches and Human Development. Global Change Biology, 19, 3082-3092.
https://doi.org/10.1111/gcb.12282
[125]  Lyons, M.P., von Holle, B., Caffrey, M.A. and Weishampel, J.F. (2020) Quantifying the Impacts of Future Sea Level Rise on Nesting Sea Turtles in the Southeastern United States. Ecological Applications, 30, e02100.
https://doi.org/10.1002/eap.2100
[126]  Pike, D.A. (2014). Forecasting the Viability of Sea Turtle Eggs in a Warming World. Global Change Biology, 20, 7-15.
https://doi.org/10.1111/gcb.12397

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133