全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Engineering  2022 

Optimizing Reverse Osmosis Membrane Parameters through the Use of the Solution-Diffusion Model: A Review

DOI: 10.4236/eng.2022.141002, PP. 9-32

Keywords: Reverse Osmosis Membrane, Solution-Diffusion Model, Maxwell Stephan Equation, Desalination Plants, Membrane Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

When designing and building an optimal reverse osmosis (RO) desalination plant, it is important that engineers select effective membrane parameters for optimal application performance. The membrane selection can determine the success or failure of the entire desalination operation. The objective of this work is to review available membrane types and design parameters that can be selected for optimal application to yield the highest potential for plant operations. Factors such as osmotic pressure, water flux values, and membrane resistance will all be evaluated as functions of membrane parameters. The optimization of these parameters will be determined through the deployment of the solution-diffusion model devolved from the Maxwell Stephan Equation. When applying the solution-diffusion model to evaluate RO membranes, the Maxwell Stephan Equation provides mathematical analysis through which the steps for mass transfer through a RO membrane may be observed and calculated. A practical study of the use of the solution-diffusion model will be discussed. This study uses the diffusion-solution model to evaluate the effectiveness of a variety of Toray RO membranes. This practical application confirms two principal hypotheses when using the diffusion-solution model for membrane evaluation. First, there is an inverse relationship between membrane and water flux rate. Second, there is a proportional linear relationship between overall water flux rate and the applied pressure across a membrane.

References

[1]  Wijmans, J. and Baker, R. (1995) The Solution-Diffusion Model: A Review. Journal of Membrane Science, 107, 1-21. https://doi.org/10.1016/0376-7388(95)00102-I
[2]  Ahuchaogu, A.A., Chukwu, O.J., Obike, A.I., Igara, C.E., Nnorom, I.C. and Echeme, J.B.O. (2018) Reverse Osmosis Technology, Its Applications and Nano-Enabled Membrane. International Journal of Advanced Research in Chemical Science, 5, 20-26. https://doi.org/10.20431/2349-0403.0502005
[3]  Woodard, J. (2020) What Is a Reverse Osmosis System and How Does It Work?
https://www.freshwatersystems.com/blogs/blog/what-is-reverse-osmosis
[4]  Letcher, T. (2012) Comprehensive Renewable Energy. Newnes, London.
[5]  Garud, R.M., Kore, S.V., Kore, V.S. and Kulkarni, G.S. (2011) A Short Review on Process and Applications of Reverse Osmosis. Universal Journal of Environmental Research & Technology, 1, 233-238.
[6]  Voutchkov, N. (2013) Desalination Engineering Planning and Design. McGraw-Hill, New York.
https://www.academia.edu/31057784/Desalination_Engineering_Planning_and_Design_pdf
[7]  Nastase, C., Nastase, F., Dumitru, A., Ionescu, M. and Stamatin, I. (2005) Thin Film Composites of Nanocarbons-Polyaniline Obtained by Plasma Polymerization Technique. Composites Part A: Applied Science and Manufacturing, 36, 481-485.
https://doi.org/10.1016/j.compositesa.2004.10.009
[8]  Jamaly, S., Darwish, N.N., Ahmed, I. and Hasan, S.W. (2014) A Short Review on Reverse Osmosis Pretreatment Technologies. Desalination, 354, 30-38.
https://doi.org/10.1016/j.desal.2014.09.017
[9]  Gazzani, M., Mazzotti, M., Milella, F. and Gabrielli, P. (2016) Membrane Separations-Rate Controlled Separation Processes. ETH Zürich, Zürich.
[10]  Filtration, S. (2014) Polymeric Membranes: Porous vs. Non-Porous.
https://synderfiltration.com/learning-center/articles/introduction-to-membranes/polymeric-membranes-porous-non-porous/
[11]  Mejia Mendez, D., Castel, C., Lemaitre, C. and Favre, E. (2018) Membrane Distillation (MD) Processes for Water Desalination Applications. Can Dense Selfstanding Membranes Compete with Microporous Hydrophobic Materials? Chemical Engineering Science, 188, 84-96. https://doi.org/10.1016/j.ces.2018.05.025
[12]  Pozderović, A., Moslavac, T. and Pichler, A. (2006) Concentration of Aqua Solutions of Organic Components by Reverse Osmosis. I: Influence of Trans-Membrane Pressure and Membrane Type on Concentration of Different Ester and Aldehyde Solutions by Reverse Osmosis. Journal of Food Engineering, 76, 387-395.
https://doi.org/10.1016/j.jfoodeng.2005.05.038
[13]  Senthilmurugan, S. and Gupta, S.K. (2006) Separation of Inorganic and Organic Compounds by Using a Radial Flow Hollow-Fiber Reverse Osmosis Module. Desalination, 196, 221-236. https://doi.org/10.1016/j.desal.2006.02.001
[14]  Guerquin, F. (2020) Land Degradation Neutrality for Briefing Note Water Security and Combatting Drought. Food and Agriculture Organization, Rome.
https://www.fao.org/3/ca7468en/CA7468EN.pdf
[15]  Khayet, M. and Matsuura, T. (2011) Membrane Distillation: Principles and Applications. Elsevier, Amsterdam. https://doi.org/10.1016/C2009-0-17487-1
[16]  Ibrahim, S. and Alsalhy, Q. (2012) Modeling and Simulation for Direct Contact Membrane Distillation in Hollow Fiber Modules. AIChE Journal, 59, 589-603.
https://doi.org/10.1002/aic.13845
[17]  Pangarkar, B., Deshmukh, S., Sapkal, V. and Sapkal, R. (2014) Review of Membrane Distillation Process for Water Purification. Desalination and Water Treatment, 57, 2959-2981. https://doi.org/10.1080/19443994.2014.985728
[18]  Maddah, M. and Almughwi, H.A. (2017) Application of the Solution-Diffusion model to Optimize Water flux in Reverse Osmosis Desalination Plants. AWWA/AMTA Membrane Technology Conference and Exposition 2017, Long Beach.
[19]  Baker, R.W. (2012) Membrane Technology and Applications. 3rd Edition, Wiley, Hoboken. https://doi.org/10.1002/9781118359686
[20]  Luis, P. and van der Bruggen, B. (2015) Pervaporation Modeling: State of the Art and Future Trends. In: Basile, A., Figoli, A. and Khayet, M., Eds., Pervaporation, Vapour Permeation and Membrane Distillation, Woodhead Publishing, Sawston, 87-106. https://doi.org/10.1016/B978-1-78242-246-4.00004-0
[21]  Soyekwo, F., Zhang, Q., Gao, R., Qu, Y., Lin, C., Huang, X., et al. (2017) Cellulose Nanofiber Intermediary to Fabricate Highly-Permeable Ultrathin Nanofiltration Membranes for Fast Water Purification. Journal of Membrane Science, 524, 174-185.
https://doi.org/10.1016/j.memsci.2016.11.019
[22]  Xu, C.H., Chen, X., Liu, Y.J., Xie, B., Han, M., Song, F.Q. and Wang, G.H. (2010) Enhanced Thermal Stability of Monodispersed Silver Cluster Arrays Assembled on Block Copolymer Scaffolds. Nanotechnology, 21, Article ID: 195304.
https://doi.org/10.1088/0957-4484/21/19/195304
[23]  Yuan, H.G., Liu, Y.Y., Liu, T.Y. and Wang, X.L. (2017) Self-Standing Nanofilms of Polysulfone Doped with Sulfonated Polysulfone via Solvent Evaporation for Forward Osmosis. Journal of Membrane Science, 523, 567-575.
https://doi.org/10.1016/j.memsci.2016.09.034
[24]  Karan, S., Jiang, Z. and Livingston, A. (2015) Sub-10 nm Polyamide Nanofilms with Ultrafast Solvent Transport for Molecular Separation. Science, 348, 1347-1351.
https://doi.org/10.1126/science.aaa5058
[25]  Sagle, A. and Freeman, B. (2004) Fundamentals of Membranes for Water Treatment. The Future of Desalination in Texas, 2, Article No. 137.
[26]  Abdel-Aal, E.A., Farid, M.E., Hassan, F.S. and Mohamed, A.E. (2015) Desalination of Red Sea Water Using Both Electrodialysis and Reverse Osmosis as Complementary Methods. Egyptian Journal of Petroleum, 24, 71-75.
https://doi.org/10.1016/j.ejpe.2015.02.007
[27]  Smith, R., Purnama, A. and Al-Barwani, H. (2007) Sensitivity of Hypersaline Arabian Gulf to Seawater Desalination Plants. Applied Mathematical Modelling, 31, 2347-2354. https://doi.org/10.1016/j.apm.2006.09.010
[28]  Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K. and Tchobanoglous, G. (2012) MWH’s Water Treatment: Principles and Design. John Wiley & Sons, Hoboken. https://doi.org/10.1002/9781118131473
[29]  Prausnitz, J.M., Lichtenthaler, R.N. and Azevedo, E.G. (1999) Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice Hall Inc., Hoboken.
[30]  Altaee, A. (2012) A Computational Model to Estimate the Performance of 8 Inches RO Membranes in Pressure vessel. Journal of Membrane and Separation Technology, 1, 60-71. https://doi.org/10.6000/1929-6037.2012.01.01.8
[31]  Madaeni, S.S., Afshar, M., Jaafarzadeh, N., Tarkian, F. and Ghasemipanah, K. (2011) Rearrangement of Membrane Elements in the Pressure Vessels for Optimum Utilization of Reverse Osmosis Process. Chemical Engineering Research and Design, 89, 48-54. https://doi.org/10.1016/j.cherd.2010.04.021

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133