|
雷达测流技术研究进展
|
Abstract:
江河流量监测是水文测验的重要内容,其对于水资源调度分配和防洪减灾意义重大。传统接触式测流作为最常用的测流方式,存在效率低、时效性差、洪水期测验困难等问题。雷达测流采用非接触式测流方法,因具有较好的测流精度,且不受气候条件、河水涨落、河道漂浮物等影响,弥补了传统测流方法的不足,在水文测验中得到了广泛应用。本文详述阐明了雷达测流原理、系统性总结了国内外雷达测流的发展历程和当前主流的雷达测流信号处理方法,指出了雷达测流技术研究中存在的主要问题并对未来的研究方向进行了展望,有助于促进雷达技术在江河流量监测中的应用和推广,提高水文测验的效率和安全性,推进智慧水文的建设与发展。
River flow measurement is an important content of hydrological monitoring, which is of great significance to water resources dispatching and distribution, flood prevention and disaster reduction. Traditional contact flow measurements, as the most commonly used flow measurement methods, have lots of problems such as low efficiency, poor timeliness, and difficulty in measuring during flood periods. Flow measurement of radar is a non-contact flow measurement method. Because it has good flow measurement accuracy and is not affected by weather conditions, river fluctuations, river floats, etc., it makes up for the shortcomings of traditional flow measurement methods and has been widely used in hydrological measurement. This paper clarifies the principle of radar flow measurement in detail, systematically summarizes the development history of radar technology in flow measurement and its signal processing methods, and points out the main problems and prospects in radar in flow measurement research, which is helpful to promote the application and popularization of radar technology in river flow monitoring, improve the efficiency and safety of hydrometric and promote the construction and development of smart hydrology.
[1] | 李光录, 王秀莲. 电波流速仪在青海三江源区水文监测中的应用[J]. 人民长江, 2010, 41(14): 48-50.
LI Guanglu, WANG Xiulian. Application of electric wave current-meter in hydrological monitoring of three-river source region in Qinghai Province. Yangtze River, 2010, 41(14): 48-50. (in Chinese) |
[2] | 刘代勇, 邓思滨, 贺丽阳. 雷达波自动测流系统设计与应用[J]. 人民长江, 2018, 49(18): 64-68.
LIU Daiyong, DENG Sibin, and HE Liyang. Design and application of radar wave automatic flow measurement system. Yangtze River, 2018, 49(18): 64-68. (in Chinese) |
[3] | 陈静, 江海力, 程遥. 岸基雷达比测方案设计与应用[J]. 水利水电快报, 2021, 42(5): 33-38.
CHEN Jing, JIANG Haili, and CHENG Yao. Design and application of shore-based radar comparing measurement. Express Water Resources & Hydropower Information, 2021, 42(5): 33-38. (in Chinese) |
[4] | 吴志勇, 徐梁, 唐运忆, 等. 水文站流量在线监测方法研究进展[J]. 水资源保护, 2020, 36(4): 1-7.
WU Zhiyong, XU Liang, TANG Yunyi, et al. Research progress of on-line discharge monitoring methods in hydrometry stations. Water Resource Protection, 2020, 36(4): 1-7. (in Chinese) |
[5] | 张振, 徐枫, 王鑫, 等. 河流水面成像测速研究进展[J]. 仪器仪表学报, 2015, 36(7): 1441-1450.
ZHANG Zhen, XU Feng, WANG Xin, et al. Research progress on river surface imaging velocimetry. Chinese Journal of Scientific Instrument, 2015, 36(7): 1441-1450. (in Chinese) |
[6] | 梅军亚, 陈静, 香天元. 侧扫雷达测流系统在水文信息监测中的比测研究及误差分析[J]. 水文, 2020, 40(5): 54-60.
MEI Junya, CHEN Jing, and XIANG Tianyuan. Intercomparison and error analysis of side scan radar discharge measurement system on hydrological information collection. Journal of China Hydrology, 2020, 40(5): 54-60. (in Chinese) |
[7] | 李忱, 王志毅, 张越. 雷达技术在水文测验上的应用[J]. 水利信息化, 2020(4): 42-48.
LI Chen, WANG Zhiyi, and ZHANG Yue. Application of radar technology in hydrometry. Water Resources Informatization, 2020(4): 42-48. (in Chinese) |
[8] | 杨蓉. 多普勒雷达测速系统设计及信号处理方法研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2012.
YANG Rong. Doppler radar speed measurement system design and signal processing method research. Master’s Thesis, Wuhan: Huazhong University of Science and Technology, 2012. (in Chinese) |
[9] | JAMES, R. J. A history of radar. IEEE Review, 1989, 35(9): 343-349. https://doi.org/10.1049/ir:19890152 |
[10] | GUARNIERI, M. The early history of radar. IEEE Industrial Electronics Magazine, 2010, 4(3): 36-42.
https://doi.org/10.1109/MIE.2010.937936 |
[11] | SMITH, D. G., JOL, H. M. Ground-penetrating radar investigation of a Lake Bonneville Delta, Provo Level, Brigham-City, Utah. Geology, 1992, 20(12): 1083-1086. https://doi.org/10.1130/0091-7613(1992)020<1083:GPRIOA>2.3.CO;2 |
[12] | DAVIS, J. L., ANNAN, A. P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 1989, 37(5): 531-551. https://doi.org/10.1111/j.1365-2478.1989.tb02221.x |
[13] | KURT, R. S., JOHN, E. C. Measuring flood discharge in unstable stream channels using ground-penetrating radar. Geology, 1997, 25(5): 423-426. https://doi.org/10.1130/0091-7613(1997)025<0423:MFDIUS>2.3.CO;2 |
[14] | CHEN, Y. C., KAO, S. P., and WU, J. H. Measurement of stream cross section using ground penetration radar with Hilbert-Huang transform. Hydrological Processes, 2014, 28(4): 2468-2477. https://doi.org/10.1002/hyp.9755 |
[15] | ANCHUELA, O. P., FRONGIA, P., DI GREGORIO, F., et al. Magnetometry and ground-penetrating radar surveys applied to tracing potential collectors of mining-derived pollutants in coastal sediments. Environmental Earth Sciences, 2017, 76(5): 230.
https://doi.org/10.1007/s12665-017-6555-3 |
[16] | TOMECKA-SUCHON, S. Ground penetrating radar use in flood prevention. Acta Geophysica, 2019, 67(6): 1955-1965.
https://doi.org/10.1007/s11600-019-00353-8 |
[17] | DI PRINZIO, M., BITTELLI, M., CASTELLARIN, A., et al. Application of GPR to the monitoring of river embankments. Journal of Applied Geophysics, 2010, 71(2-3): 53-61. https://doi.org/10.1016/j.jappgeo.2010.04.002 |
[18] | PLANT, W. J., KELLER, W. C. Evidence of bragg scattering in microwave doppler spectra of sea return. Journal of Geophysical Research-Oceans, 1990, 95(C9): 16299-16310. https://doi.org/10.1029/JC095iC09p16299 |
[19] | TAKAYUKI, YAMAGUCHI, and KUNIO. Flood discharge observation using radio current meter. Japanese Society of Civil Engineers, 1994, 28(497): 41-50. https://doi.org/10.2208/jscej.1994.497_41 |
[20] | COSTA, J. E., SPICER, K. R., CHENG, R. T., et al. Measuring stream discharge by non-contact methods: A proof-of-concept experiment. Geophysical Research Letters, 2000, 27(4): 553-556. https://doi.org/10.1029/1999GL006087 |
[21] | LEE, M.-C., LAI, C.-J., LEU, J.-M., et al. Non-contact flood discharge measurements using an X-band pulse radar (I) theory. 2002. https://doi.org/10.1016/S0955-5986(02)00048-1 |
[22] | LEE, M. C., LEU, J. M., LAI, C. J., et al. Non-contact flood discharge measurements using an X-band pulse radar (II) Improvements and applications. 2002. https://doi.org/10.1016/S0955-5986(02)00052-3 |
[23] | ROBERT, R., MASON JR., J. E. A proposed radar-based streamflow measurement system for the San Joaquin River at Vernalis, California. Hydraulic Measurements and Experimental Methods, 2002, 2002: 1-8. https://doi.org/10.1061/40655(2002)37 |
[24] | HONG, J. H., GUO, W. D., WANG, H. W., et al. Estimating discharge in gravel-bed river using non-contact ground-penetrating and surface-velocity radars. River Research and Applications, 2017, 33(7): 1177-1190. https://doi.org/10.1002/rra.3168 |
[25] | YANG, Y. H., WEN, B. Y., WANG, C. J., et al. Two-dimensional velocity distribution modeling for natural river based on UHF radar surface current. Journal of Hydrology, 2019, 577: 123930. https://doi.org/10.1016/j.jhydrol.2019.123930 |
[26] | CHEN, F. W., LIU, C. W. Assessing the applicability of flow measurement by using non-contact observation methods in open channels. Environ Monit Assess, 2020, 192(5): 289. https://doi.org/10.1007/s10661-020-8226-1 |
[27] | FULTON, J. W., MASON, C. A., EGGLESTON, J. R., et al. Near-field remote sensing of surface velocity and river discharge using radars and the probability concept at 10 U.S. geological survey stream gages. Remote Sensing, 2020, 12(8): 1296.
https://doi.org/10.3390/rs12081296 |
[28] | 王文华. 雷达测流仪比测分析[J]. 人民黄河, 2016, 38(5): 6-9.
WANG Wenhua. Comparing test and analysis of radar measuring instrument. Yellow River, 2016, 38(5): 6-9. (in Chinese) |
[29] | 秦福清. 雷达波流速仪在中小河流流量测验中的应用分析[J]. 水利信息化, 2012(4): 42-48.
QIN Fuqing. Application analysis on radar wave current meter at discharge measurement of middle and small rivers. Water Resources Informatization, 2012(4): 42-48. (in Chinese) |
[30] | 景波云, 陈向飞, 王震, 等. 电波流速仪流量自动在线监测装置设计与应用[J]. 人民长江, 2015, 46(1): 61-64.
JING Boyun, CHEN Xiangfei, WANG Zhen, et al. Design and application of automatic online flow monitoring device of electric wave flow meter. Yangtze River, 2015, 46(1): 61-64. (in Chinese) |
[31] | 李庆平, 秦文安, 毛启红. 非接触式流量在线监测技术在山区性河流的应用研究[J]. 湖北民族学院学报(自然科学版), 2013, 31(3): 354-356.
LI Qingping, QIN Wenan, and MAO Qihong. Application of non-contact flow online monitoring technology in mountainous rivers. Journal of Hubei University for Nationalities (Natural Science Edition), 2013, 31(3): 354-356. (in Chinese) |
[32] | DU, K. L., LAI, A. K. Y., CHENG, K. K. M., et al. Neural methods for antenna array signal processing: A review. Signal Processing, 2002, 82(4): 547-561. https://doi.org/10.1016/S0165-1684(01)00185-2 |
[33] | ZAVOL’SKII, N. A., MALEKHANOV, A. I., RAEVSKII, M. A., et al. Effects of wind waves on horizontal array performance in shallow-water conditions. Acoustical Physics, 2017, 63(5): 542-552. https://doi.org/10.1134/S1063771017040145 |
[34] | COSTA, J. E., CHENG, R. T., HAENI, F. P., et al. Use of radars to monitor stream discharge by noncontact methods. Water Resources Research, 2006, 42(7): 7421-7422. https://doi.org/10.1029/2005WR004430 |
[35] | MA, Z. G., WEN, B. Y., WANG, C. J., et al. UHF surface velocities radar system design. In Proceedings of the IEEE Conference on Electron Devices and Solid-State Circuits. Hong Kong, 2005: 19-21.
https://doi.org/2005.10.1109/EDSSC.2005.1635299 |
[36] | MA, Z. G., WEN, B. Y., ZHOU, H., et al. UHF surface currents radar hardware system design. IEEE Microwave and Wireless Components Letters, 2005, 15(12): 904-906. https://doi.org/10.1109/LMWC.2005.859966 |
[37] | WANG, C. J., WEN, B. Y., MA, Z. G., et al. Measurement of river surface currents with UHF FMCW radar systems. Journal of Electromagnetic Waves and Applications, 2007, 21(3): 375-386. https://doi.org/10.1163/156939307779367350 |
[38] | WEN, B. Y., MA, Z. G., YUAN, F., et al. Hardware system design for UHF surface velocities radar. Journal of Systems Engineering and Electronics, 2007, 18(2): 255-258. https://doi.org/10.1016/S1004-4132(07)60083-8 |
[39] | 李自立, 王才军, 李永辉. 基于超高频雷达的流量测量算法研究: 以长江武汉段为例[J]. 武汉大学学报(理学版), 2013, 59(3): 242-244.
LI Zili, WANG Caijun, and LI Yonghui. A study on the measurement of the Yangtze River flow algorithm based on UHF radar. Journal of Wuhan University (Natural Science Edition), 2013, 59(3): 242-244. (in Chinese) |
[40] | 文必洋, 许亚敏, 王才军, 等. 超高频雷达基于河流回波的通道校准算法[J]. 华中科技大学学报(自然科学版), 2014, 42(9): 64-67.
WEN Biyang, XU Yamin, WANG Caijun, et al. Channel calibration algorithm for UHF radar based on echo-signal of river. Journal of Huazhong University of Science and Technology, 2014, 42(9): 64-67. (in Chinese) |
[41] | YANG, Y. H., WEN, B. Y., WANG, C. J., et al. Real-time and automatic river discharge measurement with UHF radar. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11): 1851-1855. https://doi.org/10.1109/LGRS.2019.2958082 |
[42] | 刘智. 多普勒测速传感器信号处理算法的研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2014.
LIU Zhi. The research of signal processing algorithm of doppler speed measurement sensor. Master’s Thesis, Wuhan: Hua-zhong University of Science and Technology, 2014. (in Chinese) |
[43] | ALIMENTI, F., BONAFONI, S., GALLO, E., et al. Noncontact measurement of river surface velocity and discharge estimation with a low-cost Doppler radar sensor. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 5195-5207.
https://doi.org/10.1109/TGRS.2020.2974185 |
[44] | 何燕玲. 雷达测速算法研究与软件实现[D]: [硕士学位论文]. 武汉: 华中科技大学, 2012.
HE Yanling. Research and software design on algorithm of radar speed measurement. Master’s Thesis, Wuhan: Huazhong University of Science and Technology, 2012. (in Chinese) |
[45] | 安然, 刘小军. 基于AR模型的水流速雷达信号处理方法[J]. 电子测量技术, 2020, 43(9): 51-55.
AN Ran, LIU Xiaojun. Signal processing method of water velocity radar based on AR model. Electronic Measurement Technology, 2020, 43(9): 51-55. (in Chinese) |
[46] | TEAGUE, C. C. Root-MUSIC direction finding applied to multifrequency coastal radar. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2002)/24th Canadian Symposium on Remote Sensing. Toronto, 2002. https://doi.org/10.1109/IGARSS.2002.1026292 |
[47] | YANG, S. L., KE, H. Y., WU, X. B., et al. HF radar ocean current algorithm based on MUSIC and the validation experiments. IEEE Journal of Oceanic Engineering, 2005, 30(3): 601-618. https://doi.org/10.1109/JOE.2005.858370 |
[48] | EMERY, B M. Evaluation of alternative direction-of-arrival methods for oceanographic HF radars. IEEE Journal of Oceanic Engineering, 2020, 45(3): 990-1003. https://doi.org/10.1109/JOE.2019.2914537 |
[49] | 陆伟佳, 时霞. 浅谈雷达测流技术在美国的发展[J]. 水利水文自动化, 2006(4): 43-45.
LU Jiawei, SHI Xia. Lightly discuss development of application of radar technology in flow measurement in USA. Automation in Water Resources and Hydrology, 2006(4): 43-45. (in Chinese) |
[50] | CHEN, Y. C., LIAO, Y. J., and CHEN, W. L. Discharge estimation in lined irrigation canals by using surface velocity radar. Paddy and Water Environment, 2018, 16(4): 857-866. https://doi.org/10.1007/s10333-018-0674-7 |
[51] | 徐立中, 张振, 严锡君, 等. 非接触式明渠水流监测技术的发展现状[J]. 水利信息化, 2013(3): 37-44+50.
XU Lizhong, ZHANG Zhen, YAN Xijun, et al. Advances of non-contact instruments and techniques for open-channel flow measurements. Water Resources Informatization, 2013(3): 37-44+50. (in Chinese). |
[52] | LI, K., WEN, B. Y., XU, Y. M., et al. A novel UHF radar system design for river dynamics monitoring. IEICE Electronics Express, 2015, 12(4): 20141074. https://doi.org/10.1587/elex.12.20141074 |
[53] | DRAMAIS, G., LE COZ, J., LE BOURSICAUD, R., et al. Mobile radar gauging, field procedure and results. La Houille Blanche, 2014, 100(3): 23-29. https://doi.org/10.1051/lhb/2014025 |