全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石墨相氮化碳光催化剂改性的研究进展
Research Progress on Modification of Graphite Phase Carbon Nitride Photo Catalyst

DOI: 10.12677/MS.2021.1112147, PP. 1271-1283

Keywords: 石墨相氮化碳(g-C3N4),光催化,元素掺杂,异质结构筑,形貌控制
g-C3N4
, Photocatalytic ,Element Doping, Heterojunction Composite, Shape Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨相氮化碳(g-C3N4)是一种极具发展前景的无金属光催化剂,可应用于多种途径。它的制备方法简单、成本低且稳定性好以及合适的能带结构等优点,在污染物降解和清洁能源方面备受关注,但是其自身存在光生电子和空穴易复合、光吸收范围较窄以及较低的比表面积等缺点,使其在光催化性能方面不够理想。本文针对g-C3N4在光催化方面的应用,重点综述了元素掺杂、异质结构筑和形貌控制三个方面来提高石墨相氮化碳(g-C3N4)的光催化性能。
Graphite phase carbon nitride (g-C3N4) is a promising metal-free photocatalyst, which can be ap-plied in many ways. It has the advantages of simple preparation method, low cost, good stability, and suitable energy band structure. It has attracted much attention in pollutant degradation and clean energy, but it has photo-generated electrons and holes. The shortcomings of easy recombination, narrow light absorption range and low specific surface area make it unsatisfactory in terms of photocatalytic performance. This article focuses on the application of g-C3N4 in photocatalysis, focusing on three aspects of element doping, heterojunction composite and shape control to improve the photocatalytic performance of graphite phase carbon nitride (g-C3N4).

References

[1]  Kumar, A., Raizada, P., Singh, P., Saini, R. and Hosseini-Bandegharaei, A. (2019) Perspective and Status of Polymeric Graphitic Carbonnitride Based Z-Schemephotocatalytic Systems for Sustainable Photocatalytic Water Purification. Chemical Engineering Journal, 391, Article ID: 123496.
https://doi.org/10.1016/j.cej.2019.123496
[2]  Habibi-Yangjeh, A., Asadzadeh-Khaneghah, S., Feizpoor, S. and Rouhi, A. (2020) Review on Heterogeneous Photocatalytic Disinfection of Waterborne, Airborne, and Foodborne Viruses: Can We Win against Pathogenic Viruses? Journal of Colloid and Interface Science, 580, 503-514.
https://doi.org/10.1016/j.jcis.2020.07.047
[3]  Huang, J.J., Hu, H.Y., Tang, F., Li, Y., Lu, S.Q. and Lu, Y. (2011) Inactivation and Reactivation of Antibiotic-Resistant Bacteria by Chlorination in Secondary Effluents of a Municipal Wastewater Treatment Plant. Water Research, 45, 2775-2781.
https://doi.org/10.1016/j.watres.2011.02.026
[4]  Haaken, D., et al. (2013) Limits of UV disinfection: UV/Electrolysis Hybrid Technology as a Promising Alternative for Direct Reuse of Biologically Treated Wastewater. Journal of Water Supply: Research and Technology-Aqua, 62, 442-451.
https://doi.org/10.2166/aqua.2013.134
[5]  Lu, X., Wang, Q. and Cui, D. (2010) Preparation and Photocatalytic Properties of g-C3N4/TiO2 Hybrid Composite. Journal of Materials Science & Technology, 26, 925-930.
https://doi.org/10.1016/S1005-0302(10)60149-1
[6]  Baur, E. and Rebmann, A. (1921) Ber Versuche zur Photo-lyse des Wassers. Helvetica Chimica Acta, 4, 256-262.
https://doi.org/10.1002/hlca.19210040124
[7]  Child, M., Koskinen, O., Linnanen, L. and Breyer, C. (2018) Sus-tainability Guardrails for Energy Scenarios of the Global Energy Transition. Renewable and Sustainable Energy Reviews, 91, 321-334.
https://doi.org/10.1016/j.rser.2018.03.079
[8]  杭梦婷, 成杨, 宋晓晴, 等. 石墨相氮化碳(g-C3N4)的制备及其在单原子电催化中的应用研究进展[J]. 化学世界, 60(4): 193-198.
[9]  马琳, 康晓雪, 胡绍争. Fe-P共掺杂石墨相氮化碳催化剂可见光下催化性能研究[J]. 分子催化, 2015, 29(4): 359-368.
[10]  Maeda, K., Wang, X., Nishihara, Y., et al. (2009) Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. The Journal of Physical Chemistry C, 113, 4940-4947.
https://doi.org/10.1021/jp809119m
[11]  Zambon, A., Mouesca, J.M., Gheorghiu, C.C., et al. (2018) s-Heptazine Oligomers: Promising Structural Models for Graphitic Carbon Nitride. Chemical Science, 7, 945-950.
https://doi.org/10.1039/C5SC02992A
[12]  Zheng, Y., et al. (2015) Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis. Angewandte Chemie, 54, 12868-12884.
https://doi.org/10.1002/anie.201501788
[13]  Schwarz, M., Horath-Bordon, E., Kroll, P., et al. (2002) Tri-s-triazine Derivatives. Part I. From Trichloro-tri-s-triazine to Graphitic C3N4 Structures. New Journal of Chemistry, 26, 508-512.
https://doi.org/10.1039/b111062b
[14]  Molina, B. and Sansores, L. (1999) Eelectronic Structure of Six Phases of C3N4: A Theoretical Approach. Modern Physics Letters B, 13, 193-201.
https://doi.org/10.1142/S0217984999000269
[15]  Sano, T., et al. (2013) Activation of Graphitic Carbon Nitride (g-C3N4) by Alkaline Hydrothermal Treatment for Photocatalytic NO Oxidation in Gas Phase. Journal of Materials Chemistry A: Materials for Energy & Sustainability, 1, 6489-6496.
https://doi.org/10.1039/c3ta10472a
[16]  Wang, X.C., et al. (2012) Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. Acs Catalysis, 2, 1596-1606.
https://doi.org/10.1021/cs300240x
[17]  Dong, G., Zhang, Y., Pan, Q., et al. (2014) A Fantastic Graphitic Carbon Nitride (g-C3N4) Material: Electronic Structure, Photocatalytic and Photoelectronic Properties. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 20, 33-50.
https://doi.org/10.1016/j.jphotochemrev.2014.04.002
[18]  Shen, S.C., Ng, W.K., Letchmanan, K., et al. (2018) Graphene Nanosheets Encapsulated Poorly Soluble Drugs with an Enhanced Dissolution Rate. Carbon Letters, 27, 18-25.
[19]  Xiao, J.D., et al. (2018) Enhanced Hole-Dominated Photocatalytic Activity of Doughnut-Like Porous g-C3N4 Driven by Down-Shifted Valance Band Maximum. Catalysis Today, 307, 147-153.
https://doi.org/10.1016/j.cattod.2017.02.024
[20]  Yuan, Y.P., Yin, L.S., Cao, S.W., et al. (2014) Micro-wave-Assisted Heating Synthesis: A General and Rapid Strategy for Large-Scale Production of Highly Crystalline g-C3N4 with Enhanced Photocatalytic H2 Production. Green Chemistry, 16, 4663-4668.
https://doi.org/10.1039/C4GC01517G
[21]  Kudernac, T., Lei, S., Elemans, J.A.A.W., et al. (2009) Two-Dimensional Supramolecular Self-Assembly: Nanoporous Networks on Surfaces. Chemical Society Reviews, 38, 402-421.
https://doi.org/10.1039/B708902N
[22]  Sherrington, D.C. and Taskinen, K.A. (2001) Self-Assembly in Synthetic Macromolecular Systems via Multiple Hydrogen Bonding Interactions. Chemical Society Reviews, 30, 83-93.
https://doi.org/10.1039/b008033k
[23]  Wang, X., Maeda, K., Chen, X., et al. (2009) Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. Journal of the American Chemical Society, 131, 1680-1681.
https://doi.org/10.1021/ja809307s
[24]  Liu, X., Giordano, C. and Antonietti, M. (2014) A Facile Molten-Salt Route to Graphene Synthesis. Small, 10, 193-200.
https://doi.org/10.1002/smll.201300812
[25]  Dupont, J., de Souza, R.F. and Suarez, P.A.Z. (2002) Ionic Liquid (Molten Salt) Phase Organometallic Catalysis. Chemical Reviews, 102, 3667-3692.
https://doi.org/10.1021/cr010338r
[26]  Wang, Y., Zhang, J., Wang, X., et al. (2010) Boron- and Fluo-rine-Containing Mesoporous Carbon Nitride Polymers: Metal-Free Catalysts for Cyclohexane Oxidation. Angewandte Chemie International Edition, 49, 3356-3359.
https://doi.org/10.1002/anie.201000120
[27]  Liao, G.F., Gong, Y., Zhang, L., Gao, H.Y., Yang, G.-J. and Fang, B.Z. (2019) Semiconductor Polymeric Graphitic Carbon Nitride Photocatalysts: The “Holy Grail” for the Photocatalytic Hydrogen Evolution Reaction under Visible Light. Energy & Environmental Science, 12, 2080-2147.
https://doi.org/10.1039/C9EE00717B
[28]  Ge, Z.T., Yu, A.C. and Lu, R. (2019) Preparation of Li-Doped Graphitic Carbon Nitride with Enhanced Visible-Light Photoactivity. Materials Letters, 250, 9-11.
https://doi.org/10.1016/j.matlet.2019.04.099
[29]  Song, P., Liang, S., Cui, J., et al. (2019) Purposefully Designing Novel Hydroxylated and Carbonylated Melamine towards the Synthesis of Targeted Porous Oxygen-Dopedg-C3N4 Nanosheets for Highly Enhanced Photocatalytic Hydrogen Production. Catalysis Science & Technology, 3, 597-605.
https://doi.org/10.1039/C9CY01434A
[30]  Liu, J., Ding, G., Yu, J., et al. (2019) Hydrogen Peroxide-Assisted Synthesis of Oxygen-Doped Carbon Nitride Nanorods for Enhanced Photocatalytic Hydrogen Evolution. RSC Advances, 9, 28421-28431.
https://doi.org/10.1039/C9RA04418C
[31]  Xiong, T., Cen, W., Zhang, Y., et al. (2016) Bridging the g-C3N4 Inter-layers for Enhanced Photocatalysis. ACS Catalysis, 6, 2462-2472.
https://doi.org/10.1021/acscatal.5b02922
[32]  池宪虎, 刘凤娇, 袁海滨, 关荣锋. 镍掺杂g-C3N4纳米片高效光催化制氢[J]. 化工新型材料, 2021, 12(20): 1-8.
[33]  李鹏, 王海燕, 朱纯. 金属掺杂类石墨相氮化碳的理论研究[J]. 化学研究, 2016, 27(2): 152-160.
[34]  Hu, S., Li, F., Fan, Z., et al. (2014) Band gap-Tunable Potassium Doped Graphitic Carbon Nitride with Enhanced Mineralization Ability. Dalton Transactions, 44, 1084-1092.
https://doi.org/10.1039/C4DT02658F
[35]  李强, 石伟, 徐会君, 王本坤, 于华芹, 孙琦, 杜庆洋. Fe/g-C3N4催化剂的制备及其在可见光下的降解性能[J]. 工业水处理, 2021, 41(6): 211-215.
[36]  曹雪娟, 单柏林, 邓梅, 唐伯明. Fe掺杂g-C3N4光催化剂的制备及光催化性能研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(11): 52-57.
[37]  Hu, S., Qu, X., Bai, J., et al. (2017) The Effect of Cu(I)-N Active Sites on the N2 Photofixation Ability over Flower-Like Copper Doped g-C3N4 Prepared via a Novel Molten Salt-Assisted Microwave Process: The Experimental and Density Functional Theory Simulation Analysis. Acs Sustainable Chemistry & Engineering, 5, 6863-6872.
https://doi.org/10.1021/acssuschemeng.7b01089
[38]  徐伟权, 梁概泉. Mo掺杂C3N4的制备及其光降解罗丹明B性能研究[J]. 科技资讯, 2019, 17(35): 59-63.
[39]  Wang, M., Guo, P., Zhang, Y., et al. (2018) Synthesis of Hollow Lantern-Like Eu(III)-Doped g-C3N4 with Enhanced Visible Light Photocatalytic Performance for Organic Degradation. Journal of Hazardous Materials, 349, 224-233.
https://doi.org/10.1016/j.jhazmat.2018.01.058
[40]  Arumugam, M., Tahir, M. and Praserthdam, P. (2021) Effect of Nonmetals (B, O, P, and S) Doped with Porous g-C3N4 for Improved Electron Transfer towards Photocatalytic CO2 Reduction with Water into CH4. Chemosphere, 286, Article ID: 131765.
https://doi.org/10.1016/j.chemosphere.2021.131765
[41]  Wageh, S., Al-Ghamdi, A.A., da Jafer, R., Li, X. and Zhang, P. (2021) A New Heterojunction in Photocatalysis: S-Scheme Heterojunction. Chinese Journal of Catalysis, 42, 667-669.
https://doi.org/10.1016/S1872-2067(20)63705-6
[42]  Qi, S., Liu, X., Zhang, R., et al. (2021) Preparation and Photocatalytic Properties of g-C3N4/BiOCl Heterojunction. Inorganic Chemistry Communications, 133, Article ID: 108907.
https://doi.org/10.1016/j.inoche.2021.108907
[43]  Zhang, R., Niu, S., Xiang, J., et al. (2020) Band-Potential Fluctuation in C3N4/BiOCl Hetero-Junction for Boosting Photo-Catalytic Activity. Separation and Puri-fication Technology, 261, Article ID: 118258.
https://doi.org/10.1016/j.seppur.2020.118258
[44]  Zhao, X., Guan, J., Li, J., et al. (2021) CeO2/3Dg-C3N4 Het-erojunction Deposited with Pt Cocatalyst for Enhanced Photocatalytic CO2 Reduction. Applied Surface Science, 537, Ar-ticle ID: 147891.
https://doi.org/10.1016/j.apsusc.2020.147891
[45]  Yang, H., He, D., Liu, C., et al. (2021) Visible-Light-Driven Photocatalytic Disinfection by S-Scheme α-Fe2O3/g-C3N4 Heterojunction: Bactericidal Performance and Mechanism In-sight. Chemosphere, 287, Article ID: 132072.
https://doi.org/10.1016/j.chemosphere.2021.132072
[46]  Wageh, S., Al-Ghamdi, A.A. and Liu, L.J. (2021) S-Scheme Heterojunction Photocatalyst for CO2 Photoreduction. Acta Physico-Chimica Sinica, 37, Article ID: 2010024.
https://doi.org/10.3866/PKU.WHXB202010024
[47]  张亚宣, 姚振龙, 汪遵盛, 等. Co-g-C3N4/La-TiO2复合材料光催化降解废水中乙基黄药[J]. 金属矿山, 2021(3): 206-213.
[48]  Song, X.X., Zhu, J., Zhang, C.P., et al. (2012) Advance in Research of Production, Application and Treatment Process of Xanthate in Dressing Wastewater. Guizhou Chemical Industry, 37, 19-22.
[49]  Wang, C., Rao, Z., Mahmood, A., et al. (2021) Improved Photocatalytic Oxidation Performance of Gaseous Acetaldehyde by Ternary g-C3N4/Ag-TiO2 Composites under Visible Light. Journal of Colloid and Interface Science, 602, 699-711.
https://doi.org/10.1016/j.jcis.2021.05.186
[50]  Yu, B., Meng, F., Khan, M.W., et al. (2020) Facile Synthesis of AgNPs Modified TiO2@g-C3N4 Heterojunction Composites with Enhanced Photocatalytic Activity under Simulated Sunlight. Materials Research Bulletin, 121, 110641.1-110641.8.
https://doi.org/10.1016/j.materresbull.2019.110641
[51]  Bo, Y.A., Fma, B., Mwk, A., et al. (2020) Synthesis of Hollow TiO2@g-C3N4/Co3O4 Core-Shell Microspheres for Effective Photooxidation Degradation of Tetracycline and MO. Ceramics International, 46, 13133-13143.
https://doi.org/10.1016/j.ceramint.2020.02.087
[52]  Zhang, Z., Liu, K., Feng, Z., et al. (2016) Hierarchical Sheet-on-Sheet ZnIn2S4/g-C3N4 Heterostructure with Highly Efficient Photocatalytic H2 Production Based on Photoin-duced Interfacial Charge Transfer. Scientific Reports, 6, Article No. 19221.
https://doi.org/10.1038/srep19221

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133