|
Material Sciences 2021
钐、钆掺杂对氧化铈基电解质材料性能的影响研究进展
|
Abstract:
掺杂的CeO2基电解质是中低温固体氧化物燃料电池(SOFC)理想的电解质材料。目前对于CeO2基电解质材料掺杂规律的研究还比较欠缺,因此分析CeO2基电解质材料的掺杂规律及构效关系具有重要的意义。论文主要综述了钐、钆元素的单掺、双掺和多掺对CeO2基电解质材料性能的影响,然后进一步地分析了钐、钆掺杂CeO2基电解质材料的掺杂规律及构效关系。通过对大量文献数据的分析得到如下结论:钐、钆元素的单掺、双掺和多掺都能有效地提高氧化铈基电解质的离子电导率,多掺由于掺杂的平均离子半径更接近Ce4+,因此能够进一步提高其电导率;且在一定温度范围内,其电导率随掺杂离子浓度的增加呈先增后减的趋势。研究结果以期对实验上制备出性能更加优异的CeO2基电解质起到一定的指导作用。
The doped CeO2-based electrolyte is an ideal electrolyte material for SOFC. At present, the research on the doping rule of CeO2-based electrolyte materials is still lacking, so it is of great significance to analyze the doping rule and structure-effect relations of CeO2-based electrolyte materials. In this paper, we mainly reviewed the effects of the single, double and multiple doping of samarium and gadolinium on the properties of CeO2-based electrolyte materials, and then further analyzed the doping rules and structure-effect relations of CeO2-based electrolyte materials doped with samarium and gadolinium. Through the analysis of a large number of literature data, the following conclusions are drawn: The single, double and multiple doping of samarium and gadolinium can effectively improve the ionic conductivity of cerium oxide based electrolyte, while the multiple doping can further improve the conductivity due to the closer average ion radius of doping to Ce4+. In a certain temperature range, the conductivity increases first and then decreases with the increase of the doped ion concentration. The results are expected to play a guiding role in the preparation of CeO2-based electrolyte with better performance.
[1] | 王灿灿, 陈永红. Ce0.8Sm0.1Nd0.1O1.9电解质材料的制备和性能研究[J]. 淮南师范学院学报, 2015(5): 83-87. |
[2] | Eressa, L.A. and Rao, P. (2021) Electrical Properties of Praseodymium and Samarium Co-Doped Ceria Electrolyte for Low-Temperature Solid Oxide Fuel Cell Application. Bulletin of Materials Science, 44, Article No. 255.
https://doi.org/10.1007/s12034-021-02543-x |
[3] | 张洁, 赵梦杰, 崔颍琦, 等. 掺杂对CeO2基电解质材料性能的影响研究进展[J]. 无机盐工业, 2020, 52(5): 1-5. |
[4] | 李治均. 电解质(La1?xSrx)0.2Ce0.8O2?δ和(La0.95?xSrxBa0.05)0.2Ce0.8O2-δ的制备和电化学性能测试[D]: [硕士学位论文]. 包头: 内蒙古科技大学, 2008. |
[5] | 田瑞芬. 掺杂氧化铈基中温固体氧化物燃料电池电解质材料的制备与表征[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2009. |
[6] | 马良. 掺杂氧化铈基电解质的制备和性能研究[D]: [硕士学位论文]. 包头: 内蒙古科技大学, 2009. |
[7] | 杜春生, 吕晓娟, 彭书红, 等. 复合掺杂氧化铈基电解质电性能及显微结构研究[J]. 材料导报, 2020(14): 151-152. |
[8] | 毕海林. 中温固体氧化物燃料电池Ce0.9Gd0.1O1.95复合碱土金属氧化物(MgO, SrO)电解质材料的制备和性能研究[D]: [博士学位论文]. 长春: 吉林大学, 2017. |
[9] | Wang, F.Y., Chen, S., Wang, Q., Yu, S. and Cheng, S. (2004) Study on Gd and Mg Co-Doped Ceria Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells. Catalysis Today, 97, 189-194.
https://doi.org/10.1016/j.cattod.2004.04.059 |
[10] | 高红杰. 三掺氧化铈基固体氧化物电解质离子电导性能[D]: [硕士学位论文]. 大连: 大连理工大学, 2011. |
[11] | Wang, F.Y., Chen, S. and Cheng, S. (2004) Gd3+ and Sm3+ Co-Doped Ceria Based Electrolytes for Intermediate Temperature Solid Oxide Fuel Cells. Electrochemistry Communications, 6, 743-746.
https://doi.org/10.1016/j.elecom.2004.05.017 |
[12] | Wang, F.Y., Wan, B.Z. and Cheng, S. (2005) Study on Gd3+ and Sm3+ Co-Doped Ceria-Based Electrolytes. Journal of Solid State Electrochemistry, 9, 168-173. https://doi.org/10.1007/s10008-004-0575-0 |
[13] | 赵永旺. 氧化钐、氧化钆二元稀土掺杂氧化铈基固体电解质的制备与电性能研究[D]: [硕士学位论文]. 包头: 内蒙古科技大学, 2004. |
[14] | Pikalova, E.Y., Murashkina, A.A., Maragou, V.I., Demin, A.K., Strekalovsky, V.N. and Tsiakaras, P.E. (2011) CeO2 Based Materials Doped with Lanthanides for Applications in Intermediate Temperature Electrochemical Devices. International Journal of Hydrogen Energy, 36, 6175-6183. https://doi.org/10.1016/j.ijhydene.2011.01.132 |
[15] | Grünbacher, M., Schlicker, L., Bekheet, M.F., Gurlo, A., Kl?tzer, B. and Penner, S. (2018) H2 Reduction of Gd- and Sm-Doped Ceria Compared to Pure CeO2 at High Temperatures: Effect on Structure, Oxygen Nonstoichiometry, Hydrogen Solubility and Hydroxyl Chemistry. Physical Chemistry Chemical Physics, 20, 22099-22113.
https://doi.org/10.1039/C8CP04350G |
[16] | Li, T. and Shi, Q. (2018) Structure, Morphology and Electrical Conductivity of Sm and Bi Co-Doped CeO2 Electrolytes Synthesized by Co-Precipitation Method. Journal of Materials Science: Materials in Electronics, 29, 13925-13930.
https://doi.org/10.1007/s10854-018-9525-y |
[17] | Ikegami, L.T. (2002) Oxide Ionic Conductivity and Microstructures of Sm- or La-Doped CeO2-Based Systems. Solid State Ionics, 154-155, 461-466. https://doi.org/10.1016/S0167-2738(02)00483-6 |
[18] | Chavan, S.V., Sastry, P.U. and Tyagi, A.K. (2008) Fractal and Agglomeration Behavior in Gd and Sm Doped CeO2 Nano-Crystalline Powders. Journal of Alloys & Compounds, 457, 440-446.
https://doi.org/10.1016/j.jallcom.2007.02.140 |
[19] | Wei, L., Li, B., Liu, H. and Pan, W. (2011) Fabrication of Sm3+ and Nd3+ Co-Doped CeO2 Thin-Film Electrolytes by Radio Frequency Magnetron Sputtering. Electrochimica Acta, 56, 8329-8333.
https://doi.org/10.1016/j.electacta.2011.07.007 |
[20] | Cioatera, N., Parvulescu, V., Rolle, A. and Vannier, R.N. (2012) Enhanced Ionic Conductivity of Sm, Gd-Doped Ceria Induced by Modification of Powder Synthesis Procedure. Ceramics International, 38, 5461-5468.
https://doi.org/10.1016/j.ceramint.2012.03.058 |
[21] | Cai, T.X., Zeng, Y.W., Yin, S.L., Wang, L. and Li, C. (2011) Preparation and Characterization of Ce0.8Sm0.2O1.9(SDC) Carbonates Composite Electrolyte via Molten Salt Infiltration. Materials Letters, 65, 2751-2754.
https://doi.org/10.1016/j.matlet.2011.05.084 |