全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同孪晶界间距对截角八面体Pt力学性能的影响
Effect of Different Twin Boundary Spacing on the Mechanical Properties of Truncated Octahedral Pt

DOI: 10.12677/IJM.2021.104028, PP. 285-293

Keywords: 分子动力学,变形机制,纳米金属,塑性变形,Molecular Dynamics Simulation, Deformation Mechanism, Nanocrystalline Mental, Plastic Deformation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文通过分子动力学方法,研究了不同孪晶界间距对10 nm和20 nm截角八面体构型Pt晶粒的强化作用。本文研究了0.67 nm、1.55 nm、2.43 nm、3.31 nm、4.19 nm孪晶界间距在10 nm和20 nm晶粒拉伸过程中的力学性能和变形机制。研究结果表明,在10 nm晶粒和20 nm晶粒中均存在一个最优孪晶界间距,分别为1.55 nm和2.43 nm,拥有最好的力学性能,同时发现在临界孪晶界前后会产生变形机制的转化,位错由沿着孪晶界滑移转变为垂直孪晶界生长。本文通过分子动力学方法,研究了不同孪晶界间距对10 nm和20 nm截角八面体构型Pt晶粒的强化作用。本文研究了0.67 nm、1.55 nm、2.43 nm、3.31 nm、4.19 nm孪晶界间距在10 nm和20 nm晶粒拉伸过程中的力学性能和变形机制。研究结果表明,在10 nm晶粒和20 nm晶粒中均存在一个最优孪晶界间距,分别为1.55 nm和2.43 nm,拥有最好的力学性能,同时发现在临界孪晶界前后会产生变形机制的转化,位错由沿着孪晶界滑移转变为垂直孪晶界生长。
In this paper, molecular dynamics method is used to study the strengthening effect of different twin boundary spacing on 10 nm and 20 nm truncated octahedral Pt grains. This paper studies the mechanical properties and deformation mechanisms of the 0.67 nm, 1.55 nm, 2.43 nm, 3.31 nm, 4.19 nm twin boundary spacing during the 10 nm and 20 nm grain stretching process. The research results show that there is an optimal twin boundary spacing in both 10 nm grains and 20 nm grains, 1.55 nm and 2.43 nm, respectively, which have the best mechanical properties. At the same time, it is found that deformation mechanisms occur before and after the critical twin boundaries. The dislocation is transformed from sliding along the twin boundary to vertical twin boundary growth.

References

[1]  Chen, M.W, et al. (2003) Deformation Twinning in Nanocrystalline Aluminum. Science, 300, 1275-1277.
https://doi.org/10.1126/science.1083727
[2]  Zhu, Y.T., Liao, X.Z. and Wu, X.L. (2012) Deformation Twinning in Nanocrystalline Materials. Progress in Materials Science, 57, 1-62.
https://doi.org/10.1016/j.pmatsci.2011.05.001
[3]  Jang, D.C., Li, X.Y., Gao, H.J. and Greer, J.R. (2012) Defor-mation Mechanisms in Nanotwinned Metal Nanopillars. Nature Nanotechnology, 7, 594-601.
https://doi.org/10.1038/nnano.2012.116
[4]  Schi?tz, J. and Jacobsen, K.W. (2003) A Maximum in the Strength of Nanocrystalline. Science, 301, 1357-1359.
https://doi.org/10.1126/science.1086636
[5]  Hu, P.C., Shi, W.Z. and Mei, J.T. (2014) High Precision Pt-Resistance Temperature Measurement System. Optics and Precision Engineering, 22, 988-995.
https://doi.org/10.3788/OPE.20142204.0988
[6]  Fang, Y.X., Lei, K.G. and Qu, J.K. (2010) High Precision Temperature Measurement System Based on PT1000. Electronic Design Engineering, 18, 79-82.
[7]  Lu, L., Shen, Y.F., Chen, X.H., et al. (2004) Ultrahigh Strength and High Electrical Conductivity in Copper. Science, 304, 422-426.
https://doi.org/10.1126/science.1092905
[8]  Lu, L., Chen, X., Huang, X. and Lu, K. (2009) Revealing the Maximum Strength in Nanotwinned Copper. Science, 323, 607-610.
https://doi.org/10.1126/science.1167641
[9]  Wei, Y.J. (2011) Scaling of Maximum Strength with Grain Size in Nanotwinned FCC Metals. Physical Review B, 83, Article ID: 132104.
https://doi.org/10.1103/PhysRevB.83.132104
[10]  Mousavi, S.M.T., Zhou, H.F., Zou, G.J. and Gao, H.J. (2019) Transition from Source- to Stress-Controlled Plasticity in Nanotwinned Materials below a Softening Temperature. npj Computational Materials, 5, Article No. 15.
https://doi.org/10.1038/s41524-019-0156-5
[11]  Wang, L.H., Guan, P.F., Teng, J., Liu, P., Chen, D.K., Xie, W.Y., Kong, D.L., Zhang, S.B., Zhu, T., Zhang, Z., Ma, E., Chen, M.W. and Han, X.D. (2017) New Twinning Route in Face-Centered Cubic Nanocrystalline Metals. Nature Communications, 8, 2142.
https://doi.org/10.1038/s41467-017-02393-4
[12]  Wang, L.H., Teng, J. and Kong, D. (2018) In Situ Atomistic Deformation Mechanisms of Twin-Structured Nanocrystal Pt. Scripta Materialia, 147, 103-107.
https://doi.org/10.1016/j.scriptamat.2018.01.012
[13]  Wang, L., Du, K. and Yang, C.P. (2020) In Situ Atom-ic-Scale Observation of Grain Size and Twin Thickness Effect Limit in Twin-Structural Nanocrystalline Platinum. Nature Communications, 11, Article No. 1167.
https://doi.org/10.1038/s41467-020-14876-y
[14]  Hirel, P. (2015) Atomsk: A Tool for Manipulating and Con-verting Atomic Data Files. Computer Physics Communications, 197, 212-219.
https://doi.org/10.1016/j.cpc.2015.07.012
[15]  Plimpton, S.J. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117, 1-19.
https://doi.org/10.1006/jcph.1995.1039
[16]  Zhou, X.W., Johnson, R.A. and Wadley, H.N.G. (2004) Mis-fit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers. Physical Review B, 69, Article ID: 144113.
https://doi.org/10.1103/PhysRevB.69.144113
[17]  Li, X.Y., Wei, Y.J., Lu, L., Lu, K. and Gao, H.J. (2010) Dislocation Nucleation Governed Softening and Maximum Strength in Nano-Twinned Metals. Nature, 464, 877-880.
https://doi.org/10.1038/nature08929

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133