|
铝氧化物除砷的密度泛函理论研究
|
Abstract:
本文采用密度泛函理论的B3LYP方法研究了氧化铝和羟基氧化铝的单体和二聚体与不同质子化砷酸根物种的缔合情况。研究表明,氧化铝与不同质子化砷酸缔合方式倾向于单齿双核;羟基氧化铝与AsO43-和HAsO42-倾向以单齿双核缔合,而与H2AsO4-倾向以单齿单核缔合。羟基氧化铝中的羟基O与质子化砷酸的H易形成氢键。氧化铝和羟基氧化铝与HmAsO43-m(m = 0~2)缔合强于氧化铁和羟基氧化铁。羟基氧化铝二聚体与倾向以双核双齿缔合方式与AsO43-和HAsO42-缔合,而和H2AsO4-的双核双齿和单核单齿结构的缔合能几乎相等。羟基氧化铝二聚体与不同质子化砷酸根物种的缔合结构都显示双齿双核的缔合构型比单齿单核构型稳定。
In this paper, the B3LYP method of density functional theory method was used to study the association of monomer and dimer of alumina and hydroxyl alumina with different arsenate species. Studies have shown that the association structures between alumina and different arsenate species and arsenate species tend to be mononuclear bidentate, hydroxyl alumina tends to associate with AsO43- and HAsO42- in mononuclear bidentate mode, while H2AsO4- as the mononuclear mono-dentate mode. Hydroxyl O in hydroxyl alumina and H of protonated ararsenic acid are easy to form hydrogen bonds. The association of alumina and hydroxyl alumina with HmAsO43-m (m = 0~2) is stronger than that of iron oxide and hydroxyl oxide. The hydroxyl alumina dimer tends to associate with AsO43- and HAsO42- in a dinuclear bidentate mode, while the association energy of dinuclear bidentate association and mononuclear monodentate association with H2AsO4- is almost equal. The associative structures of hydroxylated alumina dimer and different protonated arsenate spe-cies show that the dinuclear bidentate structures are more stable than mononuclear monodentate structures.
[1] | 廖家隆, 张喆秋, 陈丽杰, 等. 含砷废水处理研究进展[J]. 有色金属科学与工程, 2018, 9(1): 86-91. |
[2] | 韩彩芸, 张六一, 邹照华, 等. 吸附法处理含砷废水的研究进展[J]. 环境化学, 2011, 30(2): 517-523. |
[3] | 张志斌, 李锦祥, 边兴玉. 铁盐除砷技术研究进展[J]. 山东建筑大学学报, 2012, 27(1): 92-95. |
[4] | Sherman, D.M. and Randall, S.R. (2003) Surface Complexation of Arsenic(V) to Iron(III) (Hydr)oxides: Structural Mechanism from ab Initio Molecular Geometries and EXAFS Spectroscopy. Geochimica et Cosmochimica Acta, 67, 4223-4230. https://doi.org/10.1016/S0016-7037(03)00237-0 |
[5] | Müller, K., Ciminelli, V.S.T., Dantas, M.S.S. and Willscher, S. (2010) A Comparative Study of As(III) and As(V) in Aqueous Solutions and Adsorbed on Iron Oxy-Hydroxides by Raman Spectroscopy. Water Research, 44, 5660-5672.
https://doi.org/10.1016/j.watres.2010.05.053 |
[6] | Watts, H.D., Tribe, L. and Kubicki, J.D. (2014) Arsenic Adsorption onto Minerals: Connecting Experimental Observations with Density Functional Theory Calculations. Minerals, 4, 208-240. https://doi.org/10.3390/min4020208 |
[7] | Otte, K., Schmahl, W.W. and Pentcheva, R. (2013) DFT+U Study of Arsenate Adsorption on FeOOH Surfaces: Evidence for Competing Binding Mechanisms. The Journal of Physical Chemistry C, 117, 15571-15582.
https://doi.org/10.1021/jp400649m |
[8] | Koilraj, P., Takaki, Y. and Sasaki, K. (2016) Adsorption Characteristics of Arsenate on Colloidal Nanosheets of Layered Double Hydroxide. Applied Clay Science, 134, 110-119. https://doi.org/10.1016/j.clay.2016.06.002 |
[9] | Ma, J., Guo, H.M., Lei, M., et al. (2016) Blocking Effect of Colloids on Arsenate Adsorption during Co-Transport through Saturated Sand Columns. Environmental Pollution, 213, 638-647.
https://doi.org/10.1016/j.envpol.2016.03.020 |
[10] | 贾宇龙. 铝溶胶的制备及结构性能[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2012. |
[11] | 赵惠忠, 徐兵, 贺中央. AlOOH溶胶的制备及其结构与性能表征[J]. 武汉科技大学学报, 2010, 33(3): 264-268. |
[12] | 丁文成, 闫凤冬, 赵洪伟, 等. 饮用水除砷材料吸附特性及影响因素分析[J]. 环境工程学报, 2013, 7(3): 873-878. |