|
rTMS对甲基苯丙胺成瘾者抑制控制功能的改善作用研究
|
Abstract:
目的:探讨男性甲基苯丙胺成瘾者的抑制控制功能特点以及rTMS干预作用研究。方法:选取40例甲基苯丙胺成瘾者作为研究对象,采用停止信号反应时(Stop Signal Reaction Time, SSRT)任务进行测试。结果:在rTMS干预后,甲基苯丙胺成瘾实验组和对照组在SSRT方面的差异具有统计学意义(P < .05)。结论:rTMS对甲基苯丙胺成瘾者的抑制控制功能等认知功能有一定程度的改善。
Objective: To explore the characteristics of inhibitory control function and the intervention effect of rTMS in male methamphetamine addicts. Methods: 40 methamphetamine addicts were selected as the research object, and the stop signal reaction time (SSRT) task was used to test. Results: After rTMS intervention, there was significant difference in SSRT between methamphetamine addiction experimental group and control group (P < .05). Conclusion: rTMS can improve the inhibition control function and other cognitive functions of methamphetamine addicts to a certain extent.
[1] | 2019年中国毒品形势报告[N]. 人民公安报, 2020-06-25(002). |
[2] | 方菁, 朱叶, 赵伟, 等(2013). 停止信号任务及其相关反应抑制理论模型综述. 中国临床心理学杂志, 21(5), 743-746, 750. |
[3] | 甘鸿, 刘登堂, 赵敏(2016). 重复经颅磁刺激治疗物质成瘾研究进展. 精神医学杂志, 29(6), 461-464. |
[4] | 梁琼丹(2018). 重复性经颅磁刺激对冰毒成瘾者冲动抑制功能的干预. 硕士学位论文, 重庆: 西南大学. |
[5] | 沈德立, 白学军(2016). 高效率学习的心理机制研究. 心理科学, 29(1), 2-6. |
[6] | 史艺荃, 周晓林(2004). 执行控制研究的重要范式——任务切换. 心理科学进展, 12(5), 672-679. |
[7] | 宋健文, 刘斌(2020). 脑神经检测技术在运动戒毒治疗康复评价中的运用——以甲基苯丙胺为例. 云南警官学院学报, (5), 7-14. |
[8] | 许东滨, 梁明辉, 林悦铭, 等(2018). 经颅磁刺激仪的应用及关键技术. 医疗装备, 31(15), 195-197. |
[9] | 朱千(2015). 阿片类药物成瘾者执行功能的研究进展. 中国药物滥用防治杂志, (1), 41-45. |
[10] | Goldstein, M. et al. (2007). Neural Substrates of the Interaction of Emotional Stimulus Processing and Motor Inhibitory Control: Anemotional Linguistic Go/No-Go fMRI Study. NeuroImage, 36, 1026-1040.
https://doi.org/10.1016/j.neuroimage.2007.01.056 |
[11] | Jennum, P., Friberg, L., Fuglsang-Frederiksen, A., & Dam, M. (1994). Speech Localization Using Repetitive Transcranial Magnetic Stimulation. Neurology, 44, 269-273. https://doi.org/10.1212/WNL.44.2.269 |
[12] | Li, C. S., Huang, C., Constable, R. T. et al. (2006a). Imaging Response Inhibition in a Stop-Signal Task: Neural Correlates Independent of Signal Monitoring and Post-Response Processing. Journal of Neuroscience, 26, 186-192.
https://doi.org/10.1523/JNEUROSCI.3741-05.2006 |
[13] | Li, C., Milivojevic, V., Kemp, K. et al. (2006b). Performance Monitoring and Stop Signal Inhibition in Abstinent Patients with Cocaine Dependence. Drug Alcohol Depend, 85, 205-212. https://doi.org/10.1016/j.drugalcdep.2006.04.008 |
[14] | Li, X., Large, C. H., Ricci, R. et al. (2011). Using Interleaved Transcranial Magnetic Stimulation/Functional Magnetic Resonance Imaging (fMRI) and Dynamic Causal Modeling to Understand the Discrete Circuit Specific Changes of Medications: Lamotrigine and Valproic Acid Changes in Motor or Prefrontal Effective Connectivity. Psychiatry Research, 194, 141-148. https://doi.org/10.1016/j.pscychresns.2011.04.012 |
[15] | Li, X., Malcolm, R. J., Huebner, K. et al. (2013). Low Frequency Repetitive Transcranial Magnetic Stimulation of the Left Dorsolateral Prefrontal Cortex Transiently Increases Cue-Induced Craving for Methamphetamine: A Preliminary Study. Drug & Alcohol Dependence, 133, 641-646. https://doi.org/10.1016/j.drugalcdep.2013.08.012 |
[16] | Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the Ability to Inhibit Simple and Choice Reaction Time Responses: A Model and a Method. Journal of Experimental Psy-chology Human Perception & Performance, 10, 276-291.
https://doi.org/10.1037/0096-1523.10.2.276 |
[17] | Moretti, J., Poh, E. Z., & Rodger, J. (2020). rTMS-Induced Changes in Glutamatergic and Dopaminergic Systems: Relevance to Cocaine and Methamphetamine Use Disorders. Frontiers in Neuroscience, 14, 137-159.
https://doi.org/10.3389/fnins.2020.00137 |
[18] | Nasreddine, Z. S., Phillips, N. A., Bédirian, V. et al. (2005). The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53, 695-699.
https://doi.org/10.1111/j.1532-5415.2005.53221.x |
[19] | Potvin, S., Pelletier, J., Grot, S. et al. (2018). Cognitive Deficits in Individuals with Methamphetamine Use Disorder: A Meta-Analysis. Addictive Behaviors, 80, 154-160. https://doi.org/10.1016/j.addbeh.2018.01.021 |
[20] | Smith, J. L., Mattick, R. P., Jamadar, S. D. et al. (2014). Deficits in Behavioural Inhibition in Substance Abuse and Addiction: A Meta-Analysis. Drug & Alcohol Dependence, 145, 1-33. https://doi.org/10.1016/j.drugalcdep.2014.08.009 |
[21] | Song, S. S., Zilverstand, A., Gui, W. J., Li, H.-J., & Zhou, X. L. (2019). Effects of Single-Session versus Multi-Session Non-Invasive Brain Stimulation on Craving and Consumption in Individuals with Drug Addiction, Eating Disorders or Obesity: A Meta-Analysis. Brain Stimulation, 12, 606-618. https://doi.org/10.1016/j.brs.2018.12.975 |
[22] | Spitzer, R. L., Kroenke, K., Williams, J. et al. (2006). A Brief Measure for Assessing Generalized Anxiety Disorder: The GAD-7. Archives of Internal Medicine, 166, 1092-1097. https://doi.org/10.1001/archinte.166.10.1092 |
[23] | Tang, A. D., Hong, I., Boddington, L. J. et al. (2016). Low-Intensity Repetitive Magnetic Stimulation Lowers Action Potential Threshold and Increases Spike Firing in Layer 5 Pyramidal Neurons in Vitro. Neuroscience, 335, 64-71.
https://doi.org/10.1016/j.neuroscience.2016.08.030 |
[24] | Thies, W., & Bleiler, L. (2013). Alzheimer’s Association (2013) Alzheimer’s Disease Facts and Figures. Alzheimer’s and Dementia, 9, 208-245. https://doi.org/10.1016/j.jalz.2013.02.003 |