全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

细胞焦亡在结核分枝杆菌中研究进展
Research Progress of Pyroptosis in Mycobacterium tuberculosis

DOI: 10.12677/ACM.2021.1112905, PP. 6106-6110

Keywords: 结核分枝杆菌,巨噬细胞,细胞焦亡
Mycobacterium tuberculosis
, Macrophage, Pyroptosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

焦亡是一种新兴的细胞内在死亡机制,是一种通过依靠半胱氨酸天冬氨酸蛋白酶(caspase)家族的促炎细胞死亡模式,当外来信号刺激被感染细胞时,模式识别受体(pattern recognition receptor, PRR)被自动激活并参与形成炎性小体(NLRP3小体),NLRP3小体特异性识别切割半胱天冬氨酸(Pro caspase-1/4/5/11)形成成熟的半胱天冬氨酸,继而作用于Gasdermin-D蛋白将其分子的GSDMD-N端解聚嵌入细胞膜上形成内径10~15 nm非选择性孔洞,导致细胞渗透肿胀和裂解坏死,同时将活化的致炎因白细胞介素-1β和IL-18释放到胞外,并募集更多的炎症细胞以此扩大炎症反应。本文就细胞焦亡的分子机制及调控结核分枝杆菌感染后巨噬细胞焦亡的影响因子进行综述。
Pyroptosis is an emerging mechanism of intracellular death. It is a pro-inflammatory cell death mode that relies on the cysteine aspartate protease (caspase) family. When the infected cells are stimulated by foreign signals, pattern recognition receptor (PRR) is automatically activated and participates in the formation of inflammasome (NLRP3 body), which specifically recognizes and clews Pro caspase-1/4/5/11 to form mature caspase. Then, it acts on Gasdermin-D protein to embed the GSDMD-N terminal of its molecule into the cell membrane to form a non-selective hole with an inner diameter of 10~15 nm, resulting in cell infiltration swelling and lysis necrosis. Meanwhile, it releases the activated inflammatory cause interleukin-1β and IL-18 into the extracellular space, and recruits more inflammatory cells to expand the inflammatory response. This article reviews the molecular mechanism of pyroapoptosis and the influencing factors of macrophage pyroapoptosis after mycobacterium tuberculosis infection.

References

[1]  陈瑜, 李艳, 余赟, 等. 细胞焦亡的分子机制及其在感染性疾病中的作用[J]. 中国病原生物学杂志, 2017, 12(2): 185-188.
[2]  姜明霞, 祁玲, 李燕京. Caspase家族在肿瘤细胞焦亡中的研究进展[J]. 肿瘤, 2020, 40(12): 70-78.
[3]  Fink, S.L. and Cookson, B.T. (2006) Caspase-1-Dependent Pore Formation during Pyroptosis Leads to Osmotic Lysis of Infected Host Macrophages. Cellular Microbiology, 8, 1812-1825.
https://doi.org/10.1111/j.1462-5822.2006.00751.x
[4]  Kayagaki, N., Warming, S., Lamkanfi, M., et al. (2011) Non-Canonical Inflammasome Activation Targets Caspase-11. Nature, 479, 117-121.
https://doi.org/10.1038/nature10558
[5]  Aglietti, R.A., Estevez, A., Gupta, A., et al. (2016) GsdmD p30 Elicited by Caspase-11 during Pyroptosis Forms Pores in Membranes. Proceedings of the National Academy of Sciences of the United States of America, 113, 7858-7863.
https://doi.org/10.1073/pnas.1607769113
[6]  Yang, D., He, Y., Mu?oz-Planillo, R., et al. (2015) Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock. Immunity, 43, 923-932.
https://doi.org/10.1016/j.immuni.2015.10.009
[7]  Zhang, J., Xia, L., Zhang, F., et al. (2017) A Novel Mechanism of Diabetic Vascular Endothelial Dysfunction: Hypoadiponectinemia-Induced NLRP3 Inflammasome Activation. Biochimica et Biophysica Acta, 1863, 1556-1567.
https://doi.org/10.1016/j.bbadis.2017.02.012
[8]  van Hout, G.P., Bosch, L., Ellenbroek, G.H., et al. (2017) The Selective NLRP3-Inflammasome Inhibitor MCC950 Reduces Infarct Size and Preserves Cardiac Function in a Pig Model of Myocardial Infarction. European Heart Journal, 38, 828-836.
https://doi.org/10.1093/eurheartj/ehw247
[9]  Schmid-Burgk, J.L., Dhruv, C., Tobias, S., et al. (2016) A Genome-Wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation. Journal of Biological Chemistry, 291, 103-109.
https://doi.org/10.1074/jbc.C115.700492
[10]  He, W., Wan, H., Hu, L., et al. (2015) Gasdermin D Is an Executor of Pyroptosis and Required for Interleukin-1β Secretion. Cell Research, 25, 1285-1298.
https://doi.org/10.1038/cr.2015.139
[11]  Coll, R.C., Robertson, A.A.B., Chae, J.J., et al. (2015) A Small-Molecule Inhibitor of the NLRP3 Inflammasome for the Treatment of Inflammatory Diseases. Nature Medicine, 21, 248-255.
https://doi.org/10.1038/nm.3806
[12]  祁会丽. 细胞焦亡激活机制及相关疾病研究进展[J]. 中华实用诊断与治疗杂志, 2016, 30(5): 417-419.
[13]  Jorgensen, I., Zhang, Y., Krantz, B.A., et al. (2016) Pyroptosis Triggers Pore-Induced Intracellular Traps (PITs) That Capture Bacteria and Lead to Their Clearance by Efferocytosis. Journal of Experimental Medicine, 213, 2113-2128.
https://doi.org/10.1084/jem.20151613
[14]  Dempsey, C., Rubio Araiz, A., Bryson, K.J., et al. (2016) Inhibiting the NLRP3 Inflammasome with MCC950 Promotes Non-Phlogistic Clearance of Amyloid-β and Cognitive Function in APP/PS1 Mice. Brain Behavior & Immunity, 61, 306-336.
https://doi.org/10.1016/j.bbi.2016.12.014
[15]  Song, L., Pei, L., Yao, S., et al. (2017) NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies. Frontiers in Cellular Neuroscience, 11, Article No. 63.
https://doi.org/10.3389/fncel.2017.00063

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133