全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis and Predictability of Dry Spell Lengths Observed in Synoptic Stations of Benin Republic (West Africa)

DOI: 10.4236/ajcc.2021.104030, PP. 597-618

Keywords: Hurst Exponent, N-Index, DSL, Predictability, Complex Behavior, Benin

Full-Text   Cite this paper   Add to My Lib

Abstract:

The complex behavior and predictability of the Dry Spell Lengths (DSL) series obtained in Benin synoptic stations, from 1951 to 2010 are analyzed in this paper using a fractal approach. The synoptic stations are located in Cotonou, Bohicon, Save (subequatorial climate), and Parakou, Natitingou, Kandi (Sudanian climate). The DSLs are computed by considering four thresholds level, R0 = {1.0, 1.5, 2.0 and 5.0} mm/day. The fractal trace is estimated for dry spell density by the mean of the “Dry Spell Spell” (DSS) n-index. The rescaled range method is used to determine the predictability of DSL. By analyzing the DSS, results show that low DSS n-index values (n-index < 0.4) are more favored in the northern part of Benin than in the southern region, whereas, high values of DSS n-index (n-index > 0.4) occur preferentially in the southern part. Therefore, during 1951-2010, the Sudanian region presents frequent wet spells, alternated with short dry spells than in the subequatorial one. However, a high degree of long dry spell persistence, followed by short dry events is observed in the subequatorial region than in the Sudanian one. The longest DSL is observed in the subequatorial region, especially in Cotonou. Except for the Kandi station, the DSLs series obtained at synoptic stations are characterized by persistence. Therefore, autoregressive processes could be applied to the DSL series. Generally, the physical process governing dry spells observed at Save, Natitingou, and Bohicon are consistently predictable than the process governing the stations of the Cotonou and Parakou. However, at Kandi station, the DSL process approximates the usual Brownian motion, and it is, therefore, unpredictable or difficult to predict.

References

[1]  Admasu, W., Tadesse, K., Yemenu, F., & Abdulkadir, B. (2014). Markov Chain Analysis of Dry, Wet Weeks and Statistical Analysis of Weekly Rainfall for Agricultural Planning at Dhera, Central Rift Valley Region of Ethiopia. African Journal of Agricultural Research, 9, 2205-2213.
https://doi.org/10.5897/AJAR2014.8664
[2]  Afouda, A. (1988). Développement de l’hydrologiethéoriqueen Afrique de l’Ouest. In Actes du séminaire sur l’état de l’eauenhydrologie et enhydrogéologie dans les zones arides et semi-aridesd’Afrique (pp. 2-11). Pub. IWRA.
[3]  Afouda, A. (1989). A Consistent State Parameter for Hydrological Studies. In Proceedings of International Conference on FRIENDS in Hydrology (pp. 107-118). IAHS-Publ. No. 187.
[4]  Afouda, A. (1990). On the Stochastic Structure of Precipitation. In Proceeding Published by University of Padova, Italy (pp. 57-71).
[5]  Afouda, A., & Adisso, P. (1997). Etude stochastique des structures de séquencessèches au Bénin. In Sustainability of Water Resources under Increasing Uncertainty (pp. 43-50). IAHS Publ. No. 240.
[6]  Afouda, A., Agbossou, K. E., &Toukon, C. (2002). Caractérisation de la variabilité du régime pluviométriquebéninois et de son impact sur la production vivrière: Cas du maïs (Zea mays L.). In 5è Conférence Inter-Régionalesurl’Environnement et l’Eau. Envirowater 2002 (pp. 102-108).
[7]  Agbazo, M. N., Koto N’Gobi, G., Alamou, E., Kounouhewa, B., & Afouda, A. (2019). Fractal Analysis of the Long-Term Memory in Precipitation over Benin (West Africa). Advances in Meteorology, 2, 1-12.
https://doi.org/10.1155/2019/1353195
[8]  Agbazo, M. N., Koto N’Gobi, G., Alamou, E., Kounouhewa, B., & Afouda, A. (2021). Assessing Nonlinear Dynamics and Trends in Precipitation by Ensemble Empirical Mode Decomposition (EEMD) and Fractal Approach in Benin Republic (West Africa). Complexity, 2021, Article ID: 3689397.
https://doi.org/10.1155/2021/3689397
[9]  Anagnostopoulou, C., Maheras, P., Karacostas, T., & Vafiadis, M. (2003). Spatial and Temporal Analysis of Dry Spells in Greece. Theoretical and Applied Climatology, 74, 77-91.
https://doi.org/10.1007/s00704-002-0713-5
[10]  Barron, J., Rockström, J., Gichuki, F., & Hatibu, N. (2003). Dry Spell Analysis and Maize Yields for Two Semi-Arid Locations in East Africa. Agricultural and Forest Meteorology, 117, 23-37.
https://doi.org/10.1016/S0168-1923(03)00037-6
[11]  Bekele, E. (2001). Markov Chain Modeling and ENSO Influences on the Rainfall Seasons of Ethiopia. Natl. Meteorol. Agency Ethiop.
http://www.wamis.org/agm/pubs/agm7/Bekele.pdf
[12]  Biamah, E. K., Sterk, G., & Sharma, T. C. (2005). Analysis of Agricultural Drought in Iiuni, Eastern Kenya: Application of a Markov Model. Hydrological Processes, 19, 1307-1322.
https://doi.org/10.1002/hyp.5556
[13]  Boko, M. (1988). Climats et communautés rurales du Benin. Rythmes climatiques et rythmes de développement. Thèse de doctorat en Géographie, ABES.
[14]  Bonsal, B. R., & Lawford, R. G. (1999). Teleconnections between El Nino and La Nina Events and Summer Extended Dry Spells on the Canadian Prairies. International Journal of Climatology, 19, 1445-1458.
https://doi.org/10.1002/(SICI)1097-0088(19991115)19:13<1445::AID-JOC431>3.0.CO;2-7
[15]  Cahill, A. T. (2003). Significance of AIC Differences for Precipitation Intensity Distributions. Advances in Water Resources, 26, 457-464.
https://doi.org/10.1016/S0309-1708(02)00167-7
[16]  Chaudry, Q., Sheikh, M. et al. (2001). History’s Worst Drought Conditions Prevailed over Pakistan.
[17]  Dayeen, F., & Hassan, M. (2016). Multi-Multifractality, Dynamic Scaling and Neighbourhood Statistics in Weighted Planar Stochastic Lattice. Chaos, Solitons & Fractals, 91, 228-234.
https://doi.org/10.1016/j.chaos.2016.06.006
[18]  Douguedroit, A. (1987). The Variations of Dry Spells in Marseilles from 1865 to 1984. International Journal of Climatology, 7, 541-551.
https://doi.org/10.1002/joc.3370070603
[19]  Epifani, C., Esposito, S., & Vento, D. (2004). Persistence of Wet and Dry Spells in Italy. First Results in Milano from 1858 to 2000. In Proceedings from the 14th International Conference on Clouds and Precipitation 2004 (pp. 18-24). Bologna.
[20]  Ezeh, C. U., Obeta, M. C., & Anyadike, R. N. C. (2016). Variations in the Sequences of Daily Rainfall across Nigeria. Arabian Journal of Geosciences, 9, 681.
https://doi.org/10.1007/s12517-016-2719-9
[21]  FAO (2016). Food and Agriculture-Key to Achieving the 2030 Agenda for Sustainable Development. Food and Agriculture Organization of the United States I5499: 32.
[22]  Feder, J. (1988). Fractals (284 p.). Springer.
https://doi.org/10.1007/978-1-4899-2124-6
[23]  Feng, D.-J., Rao, H., & Wang, Y. (2015). Self-Similar Sub-Sets of the Cantor Set. Advances in Mathematics, 281, 857-885.
https://doi.org/10.1016/j.aim.2015.06.002
[24]  Fischer, B. M. C., Mul, M. L., & Savenije, H. H. G. (2013). Determining Spatial Variability of Dry Spells: A Markov-Based Method, Applied to the Makanya Catchment, Tanzania. Hydrology and Earth System Sciences, 17, 2161-2170.
https://doi.org/10.5194/hess-17-2161-2013
[25]  Froidurot, S., & Diedhiou, A. (2017). Characteristics of Wet and Dry Spells in the West African Monsoon System. Atmospheric Science Letters, 18, 125-131.
https://doi.org/10.1002/asl.734
[26]  Girma, B. A., Birtukan, A. H., Chul-Hee, L., & Woo-Kyun, L. (2020). Spatial and Temporal Analysis of Dry and Wet Spells in Upper Awash River Basin, Ethiopia. Water, 12, 3051.
https://doi.org/10.3390/w12113051
[27]  Goltz, C. (1997). Fractal and Chaotic Properties of Earthquakes. Lecture Notes in Earth Sciences Vol. 77. Springer.
https://doi.org/10.1007/BFb0028315
[28]  Gong, D. Y., Wang, J. A., & Han, H. (2005). Trends of Summer Dry Spells in China during the Late Twentieth Century. Meteorology and Atmospheric Physics, 88, 203-214.
https://doi.org/10.1007/s00703-004-0081-z
[29]  Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., & Wiltshire, A. (2010). Implications of Climate Change for Agricultural Productivity in the Early Twenty-First Century. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 365, 2973-2989.
https://doi.org/10.1098/rstb.2010.0158
[30]  Groisman, P. Y., & Knight, R. W. (2008). Prolonged Dry Episodes over the Conterminous United States: New Tendencies Emerging during the Last 40 Years. Journal of Climate, 21, 1850-1862.
https://doi.org/10.1098/rstb.2010.0158
[31]  Harrington, J., & Flannignan, M. (1993). A Model for the Frequency of Long Periods of Drought at Forested Stations in Canada. Journal of Applied Meteorology, 32, 1708-1716.
https://doi.org/10.1175/1520-0450(1993)032<1708:AMFTFO>2.0.CO;2
[32]  Hayhoe, H. N. (2000). Improvements of Stochastic Weather Data Generators for Diverse Climates. Climate Research, 14, 75-87.
https://doi.org/10.3354/cr014075
[33]  Hubert, P., Tessier, Y., Lovejoy, S., Shertzer, D., Schmitt, F., Ladoy, P., Carbonnel, J. P., Violette, S., & Desurosne, I. (1993). Multifractal and Extreme Rainfall Events. Geophysical Research Letters, 20, 931-934.
https://doi.org/10.1029/93GL01245
[34]  Hui, W., Xuebin, Z., & Elaine, M. B. (2005). Stochastic Modelling of Daily Precipitation for Canada. Atmosphere-Ocean, 43, 23-32.
https://doi.org/10.3137/ao.430102
[35]  Hurst, H. E. (1951). Long-Term Storage of Reservoirs: An Experimental Study. Transactions of the American Society of Civil Engineers, 116, 770-799.
https://doi.org/10.1061/TACEAT.0006518
[36]  Huth, R., Kyselyy, J., & Pokorna, L. (2000). A GCM Simulation of Heat Waves, Dry Spells, and Their Relationships to Circulation. Climatic Changes, 46, 29-60.
https://doi.org/10.1023/A:1005633925903
[37]  Jayawardene, H. K. W. I., Sonnadara, D. U. J., & Jayewardene, D. R. (2005). Trends in Rainfall in Sri Lanka over the Last Century. Sri Lankan Journal of Physics, 6, 7-17.
https://doi.org/10.4038/sljp.v6i0.197
[38]  Kendziorski, C. M. (1999). Evaluation Maximum Likelihood Estimation Methods to Determine the Hurst Coefficient. Physica A, 273, 439-451.
https://doi.org/10.1016/S0378-4371(99)00268-X
[39]  Kutiel, H., & Maheras, P. (1992). Variations interannuelles des séquences sèches et des situations synoptiques en Méditerranée. Publications de l’AIC, 5, 15-27.
[40]  Lana, X., Burgueño, A., Serra, C., & Martínez, M. D. (2015). Multifractality and Autoregressive Processes of Dry Spell Lengths in Europe: An Approach to Their Complexity and Predictability. Theoretical and Applied Climatology, 127, 285-303.
https://doi.org/10.1007/s00704-015-1638-0
[41]  Lana, X., Martiınez, M. D., Burgueno, A., Serra, C., Martın-Vide, J., & Gomez, L. (2006). Distribution of Long Dry Spells in the Iberian Peninsula, Years 1951-1990. International Journal of Climatology, 26, 1999-2021.
https://doi.org/10.1002/joc.1354
[42]  Lana, X., Martínez, M. D., Burgueño, A., & Serra, C. (2008b). Return Period Maps of Dry Spells for Catalonia (North-Eastern Spain) Based on the Weibull Distribution. Hydrological Sciences Journal, 53, 48-64.
https://doi.org/10.1623/hysj.53.1.48
[43]  Lana, X., Martínez, M. D., Burgueño, A., Serra, C., Martín-Vide, J., & Gomez, L. (2008a). Spatial and Temporal Patterns of Dry Spell Lengths in the Iberian Peninsula for the Second Half of the Twentieth Century. Theoretical and Applied Climatology, 91, 99-116.
https://doi.org/10.1007/s00704-007-0300-x
[44]  Lana, X., Martínez, M. D., Serra, C., & Burgueño, A. (2010). Complex Behaviour and Predictability of the European Dry Spell Regimes. Nonlinear Processes in Geophysics, 17, 499-512.
https://doi.org/10.5194/npg-17-499-2010
[45]  Lázaro, R., Rodrigo, F. S., Gutirrez, L., Domingo, F., & Puigdefáfragas, J. (2001). Analysis of 30-Year Rainfall Record in Semi-Arid SE Spain for Implications on Vegetation. Journal of Arid Environments, 48, 373-395.
https://doi.org/10.1006/jare.2000.0755
[46]  Le Barbé, L., & Lebel, T. (1997). Rainfall Climatology of HAPEX-Sahel Region during the Years 1950-1990. Journal of Hydrology, 188-189, 43-73.
https://doi.org/10.1016/S0022-1694(96)03154-X
[47]  Lovejoy, S., & Mandelbrot, B. B. (1985). Fractal Properties of Rain and a Fractal Model. Tellus A, 37, 209-232.
https://doi.org/10.1111/j.1600-0870.1985.tb00423.x
[48]  Lucena, L. R. R. D., Júnior, S. F. A. X., Stosic, T., & Stosic, B. (2018). Lacunarity Analysis of Daily Rainfall Data in Pernambuco, Brazil. Acta Scientiarum Technology, 40, e36655.
https://doi.org/10.4025/actascitechnol.v40i1.36655
[49]  Mandelbrot, B. (1985). Self-Affinity and Fractal Dimension. Physica Scripta, 32, 257-260.
https://doi.org/10.1088/0031-8949/32/4/001
[50]  Manikandan, M., Thiyagarajan, G., Bhuvaneswari, J., & Prabhakaran, N. K. (2017). Wet and Dry Spell Analysis for Agricultural Crop Planning Using Markov Chain Probability Model at Bhavanisagar. International Journal of Mathematics and Computer Applications Research, 7, 11-22.
[51]  Martınez, M. D., Lana, X., Burgueno, A., & Serra, C. (2007). Lacunarity, Predictability and Predictive Instability of the Daily Pluviometric Regime in the Iberian Peninsula. Nonlinear Processes in Geophysics, 14, 109-121.
https://doi.org/10.5194/npg-14-109-2007
[52]  Matarira, C. H., & Jury, M. R. (1992). Contrasting Meteorological Structure of Intra-Seasonal Wet and Dry Spells in Zimbabwe. International Journal of Climatology, 12, 165-176.
https://doi.org/10.1002/joc.3370120205
[53]  Mathugama, S. C., Peiris, T. S. G. (2011). Critical Evaluation of Dry Spell Research. International Journal of Basic and Applied Sciences, 6, 153-160.
[54]  Mittall, A., & Bhardwaj, R. (2011). Predictability Index, Fractal Dimension, and Hurst Exponent Estimation of Indian Air Pollution Parameters. International Journal of Advanced Science and Research, 2, 363-374.
[55]  Monjo, R. (2016). Measure of Rainfall Time Structure Using the Dimensionless n-Index. Climate Research, 67, 71-86.
https://doi.org/10.3354/cr01359
[56]  Monjo, R., Royé, D., & Martin-Vide, J. (2019). Drought Lacunarity around the World and Its Classification (Version v0.1) [Data Set], Zenodo.
https://doi.org/10.5194/essd-2019-115
[57]  Muller, A. (2006). Comportementasymptotique de la distribution des pluiesextrêmesen France. Thèse de l’Université de Montpellier II, Sciences et Techniques de Languedoc.
[58]  Peng, C., Buldyrev, S., Havlin, S., Simons, M., Stanley, H., & Goldberger, A. (1994). Mosaic Organization of DNA Nucleotides. Physical Review E, 49, 1685-1689.
https://doi.org/10.1103/PhysRevE.49.1685
[59]  Perzyna, G. (1994). Spatial and Temporal Characteristics of Maximum Dry Spells in Southern Norway. International Journal of Climatology, 14, 895-909.
https://doi.org/10.1002/joc.3370140806
[60]  Peters, E. E. (1994). Fractal Market Analysis: Applying Chaos Theory to Investment and Economic. John Wiley and Sons.
[61]  Rangarajan, G., & Sant, D. A. (1997). A Climate Predictability Index and Its Applications. Geophysical Research Letters, 24, 1239-1242.
https://doi.org/10.1029/97GL01058
[62]  Rangarajan, G., & Sant, D. A. (2004). A Fractal Dimensional Analysis of Indian Climatic Dynamics. Chaos, Solitons and Fractals, 19, 285-291.
https://doi.org/10.1016/S0960-0779(03)00042-0
[63]  Reddy, G. S., Bhaskar, S., Purohit, R., & Chittora, A. (2008). Markov Chain Model Probability of Dry, Wet Weeks and Statistical Analysis of Weekly Rainfall for Agricultural Planning at Bangalore. Karnataka Journal of Agricultural Sciences, 21, 12-16.
[64]  Rockstrom, J. (2000). Water Resources Management in Smallholder Farms in Eastern and Southern Africa: An Overview. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 275-283.
https://doi.org/10.1016/S1464-1909(00)00015-0
[65]  Salack, S., Klein, C., Giannini, A., Sarr, B., Worou, O. N., Belko, N., Bliefernicht, J., & Kunstman, H. (2016). Global Warming Induced Hybrid Rainy Seasons in the Sahel. Environmental Research Letters, 11, Article ID: 104008.
https://doi.org/10.1088/1748-9326/11/10/104008
[66]  Sanogo, S., Fink, A. H., Omotosho, J. A., Ba, A., Redl, R., & Ermert, V. (2015). Spatio-Temporal Characteristics of the Recent Rainfall Recovery in West Africa. International Journal of Climatology: A Journal of the Royal Meteorological Society, 35, 4589-4605.
https://doi.org/10.1002/joc.4309
[67]  Seleshi, Y., & Camberlin, P. (2006). Recent Changes in Dry Spell and Extreme Rainfall Events in Ethiopia. Theoretical and Applied Climatology, 83, 181-191.
https://doi.org/10.1007/s00704-005-0134-3
[68]  Serra, C., Burgueno, A., Martınez, M. D., & Lana, X. (2006). Trends of Dry Spells across Catalonia (NE Spain) for the Second Half of the 20th Century. Theoretical and Applied Climatology, 85, 165-183.
https://doi.org/10.1007/s00704-005-0184-6
[69]  Serra, C., Martínez, D., Lana, X., & Burgueño, A. (2013). Europeandry Spell Length Distributions, Years 1951-2000. Theoretical and Applied Climatology, 114, 531-551.
https://doi.org/10.1007/s00704-013-0857-5
[70]  Serra, C., Martínez, M. D., Lana, X., & Burgueño, A. (2014). European Dry Spell Regimes (1951-2000): Clustering Process and Time Trends. Atmospheric Research, 144, 151-174.
https://doi.org/10.1016/j.atmosres.2013.05.022
[71]  Sharma, T. C. (1996). Simulation of the Kenyan Longest Dry and Wet Spells and the Largest Rain-Sums Using a Markov Model. Journal of Hydrology, 178, 55-67.
https://doi.org/10.1016/0022-1694(95)02827-7
[72]  Sirangelo, B., Caloiero, T., Coscarelli, R., & Ferrari, E. (2019). A Stochastic Approach for the Analysis of Long Dry Spells with Different Threshold Values in Southern Italy. Water, 11, 26.
https://doi.org/10.3390/w11102026
[73]  Sivakumar, B., Sorooshian, S., Gupta, H. V., & Gao, X. (2001). A Chaotical Approach to Rainfall Disaggregation. Water Resources Research, 37, 61-72.
https://doi.org/10.1029/2000WR900196
[74]  Sivakumar, M. (1992). Empirical Analysis of Dry Spells for Agricultural Applications in West Africa. Journal of Climate, 5, 532-539.
https://doi.org/10.1175/1520-0442(1992)005<0532:EAODSF>2.0.CO;2
[75]  Taqqu, M. S., Teverovsky, V., & Willinger, W. (1995). Estimators for Long Range Dependence: An Empirical Study. Fractals, 3, 785-788.
https://doi.org/10.1142/S0218348X95000692
[76]  Tatli, H. (2015). Detecting Persistence of Meteorological Drought via Hurst Exponent. Meteorological Applications, 22, 763-769.
https://doi.org/10.1002/met.1519
[77]  Voss, R. F. (1985). Random Fractals: Characterization and the Measurement. In R. Pynn, & A. Skjeltorp (Eds.), Scaling Phenomena in Disordered Systems (27-32). Plenum.
[78]  Whitworth, K. L., Baldwin, D. S., & Kerr, J. L. (2012). Drought, Floods and Water Quality: Drivers of a severe Hypoxic Blackwater Event in a Major River System (the Southern Murray-Darling Basin, Australia). Journal of Hydrology, 450-451, 190-198.
https://doi.org/10.1016/j.jhydrol.2012.04.057
[79]  Wilks, D. S. (1999). Interannual Variability and Extreme-Value Characteristics of Several Stochastic Daily Precipitation Modes. Agricultural Meteorology, 93, 153-169.
https://doi.org/10.1016/S0168-1923(98)00125-7
[80]  Wilks, D. S. (2006). Statistical Methods in the Atmospheric Sciences (p. 627, 2nd ed.). International Geophysics Series, Vol. 59, Elsevier Academic Press.
[81]  Zolina, O., Simmer, C., Belyaev, K., Gulev, S. K., & Koltermann, P. (2013). Changes in the Duration of European Wet and Dry Spells during the Last 60 Years. Journal of Climate, 26, 2022-2047.
https://doi.org/10.1175/JCLI-D-11-00498.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133