全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structural Performance of Prefabricated Timber-Concrete Composite Floor Constructed Using Open Web Truss Joist Made of LVL Paraserianthes Falctaria

DOI: 10.4236/ojce.2021.114026, PP. 434-450

Keywords: LVL Sengon, Open Web Truss Joist, Pre-Fabricated Timber Floor

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper investigates an open web truss joist (OWTJ) made of laminated veneer lumber (LVL) Paraserianthes falctaria as a prefabricated timber-concrete composite floor system. The four-point bending test showed that structural performances of the OWTJ, conventional composite floor (CCF), and prefabricated composite floor (PCF) were similar. Although composite action was not developed as no lateral deformation was observed at the shear connectors, installing a concrete slab above the OWTJ can slightly increase the ductility factor of the composite floor. Furthermore, a finite element model was developed, and the model proved to be suitable for simulating the structural performance of the composite floor.

References

[1]  Ramage, M.H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D.U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., Allwood, J., Dupree, P., Linden, P.F. and Scherman, O. (2017) The Wood from the Trees: The Use of Timber in Construction. Renewable and Sustainable Energy Reviews, 68, 333-359.
https://doi.org/10.1016/j.rser.2016.09.107
[2]  Porteus, J. and Kermani, A. (2007) Structural Timber Design to Eurocode 5. Blackwell Science Ltd., Oxford.
https://doi.org/10.1002/9780470697818
[3]  Dinwoodie, J.M. (2000) Timber: Its Nature and Behaviour. Taylor & Francis e-Library, New York.
[4]  Thelandersson, S. and Larsen, H.J. (2003) Timber Engineering. John Wiley & Sons, West Sussex.
[5]  Glover, J., White, D.O. and Langrish, T.A.G. (2002) Wood versus Concrete and Steel in House Construction: A Life Cycle Assessment. Journal of Forestry, 100, 34-41.
[6]  Fragiacomo, M., Gregori, A., Xue, J., Demartino, C. and Toso, M. (2018) Timber-Concrete Composite Bridges: Three Case Studies. Journal of Traffic and Transportation Engineering (English Edition), 5, 429-438.
https://doi.org/10.1016/j.jtte.2018.09.001
[7]  Crocetti, R., Sartori, T. and Tomasi, R. (2015) Innovative Timber-Concrete Composite Structures with Prefabricated FRC Slabs. Journal of Structural Engineering, 141, 1-10.
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001203
[8]  Tannert, T., Endacott, B., Brunner, M. and Vallée, T. (2017) Long-Term Performance of Adhesively Bonded Timber-Concrete Composites. International Journal of Adhesion and Adhesives, 72, 51-61.
https://doi.org/10.1016/j.ijadhadh.2016.10.005
[9]  Lukaszewska, E. (2009) Development of Prefabricated Timber-Concrete Composite Floors. Luleå University of Technology, Luleå.
[10]  Boccadoro, L. and Frangi, A. (2014) Experimental Analysis of the Structural Behavior of Timber-Concrete Composite Slabs Made of Beech-Laminated Veneer Lumber. Journal of Performance of Constructed Facilities, 28, 1-10.
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000552
[11]  Mudie, J., Sebastian, W.M., Norman, J. and Bond, I.P. (2019) Experimental Study of Moment Sharing in Multi-Joist Timber-Concrete Composite Floors from Zero Load up to Failure. Construction and Building Materials, 225, 956-971.
https://doi.org/10.1016/j.conbuildmat.2019.07.137
[12]  Tannert, T., Gerber, A. and Vallee, T. (2019) Hybrid Adhesively Bonded Timber-Concrete-Composite Floors. International Journal of Adhesion and Adhesives, 97, Article ID: 102490.
https://doi.org/10.1016/j.ijadhadh.2019.102490
[13]  Mai, K.Q., Park, A., Nguyen, K.T. and Lee, K. (2018) Full-Scale Static and Dynamic Experiments of Hybrid CLT-Concrete Composite Floor. Construction and Building Materials, 170, 55-65.
https://doi.org/10.1016/j.conbuildmat.2018.03.042
[14]  Du, H., Hu, X.M., Xie, Z. and Wang, H.C. (2019) Study on Shear Behavior of Inclined Cross Lag Screws for Glulam-Concrete Composite Beams. Construction and Building Materials, 224, 132-143.
https://doi.org/10.1016/j.conbuildmat.2019.07.035
[15]  Dias, A., Schänzlin, J. and Dietsch, P. (2018) Design of Timber-Concrete Composite Structures. European Cooperation in Science and Technology (COST).
[16]  Awaludin, A., Firmanti, A., Muslikh, Theodarmo, H. and Astuti, D. (2017) Wood Frame Floor Model of LVL Paraserianthes falcataria. Procedia Engineering, 171, 113-120.
https://doi.org/10.1016/j.proeng.2017.01.317
[17]  Yost, J.R., Dinehart, D.W., Gross, S.P., Pote, J.J. and Gargan, B. (2004) Strength and Design of Open Web Steel Joists with Crimped-End Web Members. Journal of Structural Engineering, 130, 2016-2031.
https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(715)
[18]  Bachmann, H. and Steinle, A. (2012) Precast Concrete Structures. Ernst & Sohn.
https://doi.org/10.1002/9783433600962
[19]  Bukauskas, A., Mayencourt, P., Shepherd, P., Sharma, B., Mueller, C., Walker, P. and Bregulla, J. (2019) Whole Timber Construction: A State of the Art Review. Construction and Building Materials, 213, 748-769.
https://doi.org/10.1016/j.conbuildmat.2019.03.043
[20]  Krisnawati, H., Varis, E., Kallio, M.H. and Kanninen, M. (2011) Paraserianthes falcataria (L.) Nielsen: Ecology, Silviculture and Productivity. Center for International Forestry Research (CIFOR).
https://doi.org/10.17528/cifor/003394
[21]  Awaludin, A., Shahidan, S., Basuki, A., Zuki, S.S.M. and Nazri, F.M. (2018) Laminated Veneer Lumber (LVL) Sengon: An Innovative Sustainable Building Material in Indonesia. International Journal of Integrated Engineering, 10, 17-22.
[22]  Wusqo, U., Awaludin, A., Setiawan, A.F. and Irawati, I.S. (2019) Study of Laminated Veneer Lumber (LVL) Sengon to Concrete Joint Using Two-Dimensional Numerical Simulation. Journal of the Civil Engineering Forum, 5, 275-288.
https://doi.org/10.22146/jcef.47694
[23]  The European Union (2011) Eurocode 5: Design of Timber Structures—Part 1-1: Genera-Common Rules and Rules for Buildings.
[24]  Tantisaputri, I.A., Awaludin, A., Siswosukarto, S., Teknik, F. and Mada, U.G. (2019) Analisa Kekuatan Tahanan Lateral Pada Sistem Komposit LVL Kayu Sengon dan Beton Pracetak [Analysis of Lateral Resistant Strength in Composite System LVL Sengon and Concrete]. Media Komunikasi Teknik Sipil, 25, 132-140.
https://doi.org/10.14710/mkts.v25i2.23068
[25]  Hutton, D.V. (2004) Fundamentals of Finite Element Analysis. McGraw Hill, New York.
[26]  ICC (2015) The Strength of Concrete. Concrete Manual Based on the 2015 IBC and ACI 318-14, International Code Council, Inc., Washington DC, 23-27.
[27]  Mesh Convergence.
https://abaqus-docs.mit.edu/2017/English/SIMACAEGSARefMap/simagsa-c-ctmmeshconverg.htm
[28]  Morlier, P. (2005) Creep in Timber Structure. CRC Press.
[29]  Basuki, A., Awaludin, A., Suhendro, B. and Siswosukarto, S. (2018) Predicting Bending Creep of Laminated Veneer Lumber (LVL) Sengon (Paraserianthes falcataria) Beams from Initial Creep Test Data. MATEC Web of Conferences, 195, Article ID: 02028
[30]  O’Ceallaigh, C., Sikora, K., McPolin, D. and Harte, A.M. (2018) An Investigation of the Viscoelastic Creep Behaviour of Basalt Fibre Reinforced Timber Elements, Construction and Building Materials, 187, 220-230.
https://doi.org/10.1016/j.conbuildmat.2018.07.193
[31]  Huang, Y. (2016) Creep Behavior of Wood under Cyclic Moisture Changes: Interaction between Load Effect and Moisture Effect. Journal of Wood Science, 62, 392-399.
https://doi.org/10.1007/s10086-016-1565-4
[32]  Van De Kuilen, J.W.G. (2008) Creep of Timber Joints. Heron, 53, 133-156.
[33]  Laufenberg, T.L., Palka, L.C. and Mcnatt, J.D. (1999) Creep and Creep-Rupture Behavior of Wood-Based Structural Panels. U.S. Department of Agriculture, Forest Service, Forest Prod Lab, Madison.
[34]  Holzer, S., Loferski, J. and Dillard, D. (1989) A Review of Creep in Wood: Concepts Relevant to Develop Long-Term Behavior Predictions for Wood Structures. Wood and Fiber Science, 21, 376-392.
[35]  Badan Standardisasi Nasional (National Standardiation Agency of Indonesia) (2013) SNI 1727: 2013 Beban minimum untuk perancangan bangunan gedung dan struktur lain (Minimum Load for Buildings and Other Structures Design).
[36]  Badan Standardisasi Nasional (National Standardiation Agency of Indonesia) (2002) Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (Procedure of Concrete Structures Calculation for Buildings). SNI 03-2847-2002.
[37]  Aicher, S., Reinhardt, H.W. and Garrecht, H. (2014) Materials and Joints in Timber Structures: Recent Developments of Technology. Springer, Dordrecht.
https://doi.org/10.1007/978-94-007-7811-5
[38]  Muñoz, W., Mohammad, M., Selenikovich, A. and Quenneville, P. (2008) Determination of Yield Point and Ductility of Timber Assemblies: In Search of Harmonised Approach. 10th World Conference on Timber Engineering, Miyazaki, 2-5 June 2008, 1064-1071.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133